Сетевая библиотекаСетевая библиотека

Возвращение времени. От античной космогонии к космологии будущего

Возвращение времени. От античной космогонии к космологии будущего
Возвращение времени. От античной космогонии к космологии будущего Ли Смолин Большинство людей считает, что время реально: меняются времена года, идут часы, человек стремится от колыбели к могиле. Большинство физиков, напротив, полагает, что время есть иллюзия – и, возможно, напрасно, как полагает известный канадский физик Ли Смолин. Автор книг “Жизнь космоса” (1997) и “Неприятности с физикой” (2006) напоминает, что все затруднения физиков и космологов (от Большого взрыва до “теории всего”) восходят к проблеме природы времени, а признание его реальности может вывести фундаментальную науку на новый уровень. Ли Смолин Возвращение времени. От античной космогонии к космологии будущего Посвящается моим родителям Полине и Майклу Роберту Мангабейре Унгеру – с благодарностью за совместное путешествие Из чего возникают все вещи, в то же самое они и разрешаются согласно необходимости… в установленное время.     Анаксимандр Перевод с английского д-ра физ. – мат. наук Андрея Ростовцева © Spin Networks, Ltd., 2013 © А. Ростовцев, перевод на русский язык, 2014 © А. Бондаренко, художественное оформление, макет, 2014 © ООО “Издательство АСТ”, 2014 Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав. * * * Один из самых ярких ныне живущих теоретиков… Смолин подвергает сомнению не только теорию относительности Эйнштейна, но даже отношение к законам природы как к вечной, неизменной истине.     THE ECONOMIST Эта книга (смесь науки, философии и научной фантастики) увлекательная, будоражащая, невероятно смелая – и в той же степени спорная.     Алан Лайтман Ли Смолин пытается убедить нас, что время – это физическая реальность, а вечность, четырехмерный пространственно-временной континуум – иллюзии. Его аргументы неожиданны и оригинальны. Я давно не читал ничего подобного.     Джеймс Глик Книгу Смолина следует порекомендовать не только ради ознакомления с главной ее темой, но и из-за пересказа автором некоторых из наиболее экстравагантных современных физических теорий. Положения, которые обосновывает Смолин, глубоки и необычны, и излагает он их ярко и с изяществом.     THE TIMES HIGHER EDUCATION Предисловие Что такое время? Этот простой, казалось бы, вопрос затрагивает наиболее важные проблемы, встающие перед наукой. Все загадки природы, волнующие физиков и космологов – от Большого взрыва до будущего Вселенной, от квантов до великого объединения взаимодействий и частиц, – связаны с природой времени. Прогресс науки неразрывно связан с устранением иллюзий. Ученые разделили материю, казавшуюся однородной, на атомы. А атомы, казавшиеся неделимыми, – на протоны, нейтроны, электроны (сами же протоны и нейтроны, как выяснилось, состоят из кварков). Солнце, казалось, вращается вокруг Земли, – но в действительности все наоборот. И, наконец, все движется относительно всего. Время – самый заметный аспект обыденного опыта. Все, что мы думаем, чувствуем, делаем, напоминает о существовании времени. Мы воспринимаем мир в виде потока моментов времени. Однако и физики, и философы долго убеждали нас (и многих убедили), что время – это иллюзия. Когда я спрашиваю своих друзей, не имеющих отношения к науке, что они думают о времени, я часто слышу, что его течение обманчиво и на самом деле реально все: и истина, и справедливость, и божественное, и законы природы – и все это лежит за пределами понятия времени. Идея иллюзорности времени общепринята и в нашей философии, и в религии. Тысячелетиями люди мирились с тем, что жизнь полна трудностей, а человек смертен, и жили верой в возможность бегства в более реальный, вечный мир. Нереальным время полагали наши выдающиеся мыслители. Платон, величайший философ древности, и Эйнштейн, величайший физик современности, учили, что все реальное в природе существует вне времени. Они рассматривали ощущение человеком хода времени как некоторое случайное обстоятельство, скрывающее от нас истину. Оба они считали, что мы должны избавиться от этой иллюзии. Я тоже верил в нереальность времени. Я стал физиком потому, что в юности мечтал сбежать из мира людей, уродливого и жестокого, в чистый мир вневременных истин. Позднее я понял, как это прекрасно: быть человеком, и тяга к трансцендентному у меня прошла. Я перестал верить в то, что время нереально, и перешел в противоположный лагерь. Время не просто реально: мы не знаем ничего, что в той же степени, как время, приближало бы нас к пониманию природы. Теперь я убежден, что время – это ключ к квантовой теории и объединению последней с категориями пространства, времени, гравитации, а также с космологией. Мне кажется, чтобы придать смысл картине мироздания, складывающейся из результатов наблюдений, нам следует переосмыслить реальность времени. Это я и имею в виду под возвращением времени. В этой книге изложены научные доводы в пользу реальности времени. Если вы считаете, что время иллюзорно, я намерен переубедить вас. А если верите, что время реально, я надеюсь укрепить вас в этом убеждении. Это книга для всех: нет ни одного человека, мировидение которого формируется без учета времени. Даже если вы не задумывались над этим вопросом, мышление и язык, на котором вы выражаете мысли, окрашены древними метафизическими представлениями о времени. Если мы принимаем революционную точку зрения (время реально, а не иллюзорно), как изменятся наши представления обо всем остальном? Мы, кроме прочего, по-новому увидим и возможности, и опасности, подстерегающие человечество. Небольшая часть этой книги связана с личным опытом. “Папа, – спросил меня однажды сын, – когда ты был таким же маленьким, тебя звали так же, как меня?” Ребенок понял, что время было и до него, и теперь искал возможность связать свой короткий жизненный путь с долгой историей мира. Любое путешествие преподает нам урок. Я, например, понял, насколько радикальны идеи, содержащиеся в простом утверждении о том, что время реально. Начав свою жизнь в науке с поисков уравнения, не учитывающего времени, я уверился в том, что величайшая тайна Вселенной есть то, как она разворачивается перед нами во времени. Хотя мы воспринимаем себя живущими во времени, мы часто представляем, что лучший мир лежит за его границами. Мы верим, что истина существует не сейчас, а всегда, что она была прежде нас и останется после нас. Что мораль абсолютна. Мы, кажется, прочно усвоили, что если и есть нечто ценное, то оно пребывает вне времени. Мы стремимся к вечной любви, рассуждаем о вечных истине и справедливости. Бог, математические законы, законы природы и так далее не подвластны времени. Мы живем во времени, однако поверяем свои поступки мерилом вечности. И – оказываемся отчужденными от того, что имеет наибольшую ценность. Научные эксперименты и их анализ привязаны к времени, как и все наши наблюдения за природой, однако мы считаем, что нашли указание на существование вневременных законов. Этот парадокс затрагивает нас как личности, как членов семьи, как граждан, потому что то, как мы оцениваем будущее, обусловлено нашим отношением к времени. В этой книге я надеюсь по-новому взглянуть на парадокс жизни во времени. Я считаю, что время и его ход реальны и носят фундаментальный характер, а вечность и вечные истины – просто мифология. Новый подход к понятию времени предполагает, что реальность состоит лишь из того, что реально в каждый момент. Это радикальная идея. Она отрицает какое-либо вневременное существование или истины (будь то в сфере науки, этики, математики или государственного управления). Все они должны быть привязаны к времени. Принятие времени также означает: наше видение того, как Вселенная устроена на базовом уровне, неполно. Утверждая, что время реально, я имею в виду следующее: Все, что реально в нашей Вселенной, реально в определенный момент, один из ряда следующих друг за другом. Прошлое было реальным, но теперь уже нет. Мы можем, однако, интерпретировать и анализировать прошлое, поскольку находим его следы в настоящем. Будущего еще не существует, и оно открыто для нас. Можно делать обоснованные прогнозы, но точно предсказать будущее мы не в состоянии. Ничто не подвластно времени, даже законы природы. Они не вечны. Как и вообще все, они реальны в настоящий момент и с течением времени развиваются. Эти гипотезы указывают новое направление развития фундаментальной физики. Я собираюсь доказать, что это единственный способ преодолеть нынешний кризис в теоретической физике и космологии. Они влияют и на восприятие нами собственной жизни, и на наше отношение к глобальным проблемам. Чтобы объяснить, почему реальность времени важна в науке и вне ее, я противопоставлю мышление во времени мышлению вне времени. Мнение, будто истина вечна и надмирна, настолько широко распространено, что бразильский философ Роберту Мангабейра Унгер назвал его “вечной философией”. Это суть платоновской мысли, наглядно переданная в рассказе (фрагмент диалога “Менон”) о мальчике-рабе и геометрии квадрата: там Сократ утверждает, что все открытия – лишь припоминание. Если мы считаем, что ответ на любой вопрос (как быть хорошими родителями, супругами, гражданами, какой общественный строй наилучший и так далее) лежит в вечном царстве истины, то мы мыслим без привязки ко времени. Ученые мыслят во времени, когда речь идет о новых идеях, требующихся для объяснения открываемых явлений, и о новом математическом аппарате для их описания. Если мы мыслим вне времени, то считаем, что эти идеи существовали до того, как мы пришли к ним. Но если мы мыслим во времени, полагать это нет оснований. Контраст между мышлением во времени и вне времени очевиден во многих сферах. Мы мыслим вне времени, если, столкнувшись с технической или социальной проблемой, предполагаем, что возможные подходы к ее решению уже определены. Тот, кто считает, что верная экономическая либо политическая теория создана в позапрошлом веке, мыслит вне времени. Когда мы вместо этого видим цель политики в отыскании новых решений проблем, возникающих по мере развития общества, мы мыслим во времени. Мы мыслим во времени и если считаем, что прогресс в технике, общественном устройстве и науке заключается в предложении новых идей, стратегий и форм социальной организации. Если мы беспрекословно принимаем жесткие требования, обычаи и структуру управления различных организаций и сообществ, как если бы это были абсолютные категории, мы ставим себя вне времени. Мы возвращаемся во время, когда понимаем, что любая функция социальной организации есть продукт исторического развития, предмет договоренностей и постоянного совершенствования. Если мы считаем, что задача физики – это открытие математических уравнений, отражающих жизнь Вселенной, то мы верим, что истинное знание о Вселенной лежит за ее пределами. Это настолько привычная мысль, что мы не замечаем ее абсурдности. Если Вселенная – это все, что существует, то как может что-либо лежать вне нее? А если мы принимаем реальность времени, то не может существовать уравнений, исчерпывающе описывающих мир. У него есть свойство, которое не поддается такому описанию: всегда наличествует некоторый момент времени. Дарвинизм является примером мышления во времени. В его основе лежит осознание того, что природные процессы, протекающие во времени, могут привести к рождению качественно новых структур. Могут даже возникнуть новые законы природы – как только явятся на свет те структуры, к которым они применяются. Половой отбор, например, не мог возникнуть прежде, чем появилось разделение полов. Эволюционная динамика не нуждается в обширных абстрактных пространствах, как и все жизнеспособные особи, последовательности ДНК, наборы белков и законы биологии. Биолог-теоретик Стюарт А. Кауфман считает, что эволюционную динамику вернее представлять так: биосфера ведет исследование во времени, постоянно отвечая на вопрос, что случится при следующем шаге. То же касается развития техники, экономики и социума. Мыслить во времени – это не релятивизм, а форма реляционизма, утверждающего, что истинное описание чего-либо состоит из указания его отношений с другими элементами данной системы. Истина может быть и временной, и объективной – когда речь идет об объектах, изобретенных либо появившихся в ходе эволюции или развития человеческой мысли. На личностном уровне мыслить во времени – значит принимать неопределенность как неизбежную цену того, что мы живы. Бороться с нестабильностью, отрицать неопределенность, не принимать риск, представлять, что жизнь можно организовать так, чтобы исключить опасность, – значит мыслить вне времени. Быть человеком – значит жить в опасности. Мы стараемся преуспеть в переменчивом мире, мы заботимся о тех, кого любим, и получаем от всего этого удовольствие. Мы строим планы, но не можем точно предугадать все, что нас ждет. Буддисты говорят: мы живем в доме, в котором начался пожар, только еще не заметили этого. В первобытные времена опасность ждала людей повсюду. В современном обществе опасность грозит нам сравнительно редко. Жизнь требует от нас мудрости при выборе из множества опасностей таких, которых действительно стоит поберечься. Речь идет и о выборе возможностей, которые нам дарит каждый момент. Мы выбираем, чему посвятить свои энергию и внимание, и делаем это всегда в условиях неполного знания о последствиях своего выбора. Можем ли мы улучшить ситуацию? Можем ли справиться с капризами бытия и достичь состояния, в котором мы знали бы пусть не все, но достаточно для исчерпывающей оценки последствий своего выбора? Можем ли мы вести по-настоящему разумную жизнь? Да, это было бы возможно, если время было бы иллюзией: ведь в мире, в котором время не играет никакой роли, не было бы принципиальной разницы между знанием о настоящем и о будущем. Просто нам потребовалось бы больше вычислений. Некоторые числа и формулы – вот и все, что понадобилось бы для достаточно точного предсказания. Но если время реально, то будущее нельзя вывести из знания о настоящем. В такой ситуации сюрпризы неизбежны: они следуют из нашего неведения о последствиях своих поступков. Сюрприз – неотъемлемая часть бытия. Природа может преподнести сюрпризы, для которых у нас нет достаточного количества знаний. Новое реально. С помощью воображения мы можем создавать нечто, для предсказаний чего нам недостаточно накопленных знаний. Именно поэтому для каждого важно, реально время или нет. Ответ на этот вопрос может изменить наше восприятие своего положения внутри во многих отношениях неизвестной Вселенной. (Я вернусь к этому вопросу в эпилоге: полагаю, что признание реальности времени может помочь решить такие проблемы, как изменение климата и экономический кризис.) Прежде чем перейти к главному, позволю себе несколько советов. Я пытался изложить свои соображения для читателя, не имеющего ни специального физического, ни математического образования. В книге нет уравнений, и основные вопросы я иллюстрирую простейшими примерами. Когда мы перейдем к более сложным вещам, я рекомендую читателям, потерявшим нить рассуждений, делать то, что научились делать ученые: перейти к месту в книге, где текст снова становится ясен. Те, кто желает больше узнать обо всем этом, может воспользоваться интерактивными приложениями на сайте: www.timereborn.com (http://www.timereborn.com/). Примечания в конце книги, надеюсь, окажутся полезными и специалистам, и широкой публике. Путь к возвращению времени занял у меня более 20 лет. Он начался с осознания того, что законы природы должны эволюционировать. Я боролся с теорией относительности, квантовой теорией и теорией квантовой гравитации, которые привели меня к изложенным здесь выводам. Сотрудничество и дискуссии с друзьями и коллегами оказались очень важны для меня (см. раздел “Благодарности”, а также примечания), но плодотворнее всего оказалось сотрудничество с Роберту Мангабейрой Унгером[1 - Эту книгу можно рассматривать как введение к серьезной работе по естествознанию (или ее популярное изложение), которую я готовлю вместе с Роберту Мангабейрой Унгером. В книге с рабочим заглавием “Сингулярная Вселенная и реальность времени” мы приводим доводы в пользу реальности времени и эволюции законов природы, а также рассматриваем варианты решения дилеммы метазаконов (см. главу 19).]. Напоминаю, что есть много точек зрения на природу времени, квантовую теорию, космологию и многое другое, что здесь не обсуждается. Существует обширная литература по физике, космологии и философии, касающаяся вопросов, затронутых в моей книге. Просто я решил показать читателям, которые, может быть, впервые столкнулись с этой областью знаний, путь через сложный ландшафт[2 - См.: Smolin, Lee A Perspective on the Landscape Problem / arXiv:1202.3373v1 [physics.hist-ph] (2012); Smolin, Lee The Unique Universe // Phys. World, June 2, 21–26 (2009); Smolin, Lee The Case for Background Independence / In: The Structural Foundations of Quantum Gravity, ed. Rickles, Dean, et al. New York: Oxford University Press, 2007; Smolin, Lee The Present Moment in Quantum Cosmology: Challenges for the Argument for the Elimination of Time / In: Time and the Instant, ed. Durie, Robin. Manchester, U. K.: Clinamen Press, 2000; Smolin, Lee Thinking in Time Versus Thinking Outside of Time / In: This Will Make You Smarter. Ed. Brockman, John. New York: Harper Perennial, 2012; Kauffman, Stuart, and Lee Smolin A Possible Solution to the Problem of Time in Quantum Cosmology / arXiv: gr-qc/9703026v1 (1997).]. Например, сочинения о взглядах Канта на пространство и время занимают целые полки. Я также не излагаю взгляды некоторых современных философов. Прошу прощения у моих ученых друзей за эти упущения и отсылаю читателя к библиографическому списку.     Торонто, август 2012 года Введение В общепринятой научной картине мира время иллюзорно. И, если принять гипотезу об его реальности, последствия окажутся революционными. Наше представление о времени вытекает из понимания физических законов. Общеизвестно, что все происходящее во Вселенной определяется законами природы, объясняющими, как прошлое превращается в будущее. Законы природы непреложны, и если условия в данный момент полностью определены, у нас нет свободы выбора. Мы всегда знаем, как будут развиваться события. Томасина Каверли, не по годам умная героиня пьесы Стоппарда “Аркадия”, заявляет учителю Септимусу Ходжу: Если остановить каждый атом, определить его положение и направление его движения и постигнуть все события, которые не произошли благодаря этой остановке, то можно – очень-очень хорошо зная алгебру – вывести формулу будущего. Конечно, сделать это по-настоящему ни у кого ума не хватит, но формула такая наверняка существует[3 - Пер. О. Варшавер. – Прим. пер.]. Я считаю, что цель моей работы как физика-теоретика состоит в выведении такой формулы. Хотя моя вера в ее существование имеет под собой скорее мистические основания, чем научные. Если бы Стоппард писал о современной героине, она сравнила бы Вселенную с компьютером, а законы физики – с программами. Если программе задать положение всех элементарных частиц во Вселенной, то компьютер определит положение всех элементарных частиц в некоторый момент в будущем. С этой точки зрения в природе не происходит ничего, кроме перегруппировки в пространстве элементарных частиц в соответствии с неизменными во времени законами. Таким образом, прошлое целиком определяет настоящее, а настоящее определяет будущее. Этот подход преуменьшает роль времени[4 - И не только время: он преуменьшает все аспекты нашего восприятия (цветной, сенсорный, музыка, эмоции, сложные мысли), сводя их к перегруппировке атомов. В этом суть атомистического взгляд на мир, предложенного Демокритом и Лукрецием, выраженного Локком в теории первичных и вторичных качеств и, похоже, целиком подтвержденного наукой. С этой точки зрения реально движение – в современном понимании (квантовые переходы). Все прочее – до некоторой степени иллюзия. Я не собираюсь ни оспаривать эти воззрения (они в основном истинны), ни подкреплять их наукой. Моя цель – оспорить утверждение, будто время иллюзорно.]. Поскольку все сводится к перемещению атомов, существование любых неожиданностей, по-настоящему новых явлений отрицается. Свойства атомов не зависят от времени, как, впрочем, и законы природы, которым подчиняются атомы. Любое действие в будущем можно рассчитать, исходя из конфигурации настоящего. Таким образом, течение времени может быть заменено на вычисление, а будущее логически вытекает из настоящего. Альберт Эйнштейн (см. главу 6) делает еще более сильное заявление: понятие времени несущественно для фундаментального описания мира. Принцип относительности гласит, что в истории Вселенной время не играет никакой роли, а настоящее, прошлое и будущее имеют смысл лишь в субъективном восприятии мира. Время – дополнительное измерение пространства, а наше представление о течении времени – иллюзия восприятия реальности вне времени. Такой взгляд может испугать любого, кто верит в свободу воли. Но это не тот довод, к которому я собираюсь здесь прибегнуть. Мои аргументы основаны на науке. Моя задача – объяснить, почему расхожие доказательства предопределенности будущего неверны с научной точки зрения. В части I книги я представлю доводы в пользу иллюзорности понятия времени, а в части II опровергну их и докажу, что фундаментальная физика и космология смогут преодолеть нынешний кризис, если примут время как реальность. В части I я прослежу развитие концепции времени в физике со времен Аристотеля и Птолемея до наших дней и покажу, как с развитием физики роль времени уменьшалась. В части II мы коснемся более современных физических представлений, поскольку довод в пользу возвращения времени в центр внимания ученых подтверждается новейшими исследованиями. Успех научных теорий со времен Ньютона основывался на представлении о мире, принесенном Ньютоном: природа состоит из частиц с неизменными свойствами, чьи движение и взаимодействие подчиняются неизменным законам природы. Такие свойства частиц, как масса и электрический заряд, не изменяются, как и законы природы. Этот подход идеально годится для описания небольших частей Вселенной, однако если мы попробуем с его помощью описать Вселенную в целом, результат оставит желать лучшего. Все основные теории рассматривают какую-либо небольшую часть Вселенной: радио, летящий мяч, клетку, Землю, Галактику. Когда мы имеем дело с частью Вселенной, мы помещаем себя и инструменты наблюдения за ее пределы. Мы не выбираем и не подготавливаем исследуемую систему. Мы не принимаем во внимание системы отсчета, служащие для определения местоположения системы, и, что наиболее важно, не пользуемся часами для наблюдения за развитием системы. Расширение физической теории до космологического масштаба требует нового подхода. В космологической теории ничего нельзя поместить вне исследуемой системы. Если теория полна, то она включает все, что ни есть во Вселенной, и даже нас как наблюдателей. Она должна учитывать наши инструменты и часы. Но в космологии мы сталкиваемся с затруднением: когда рассматриваешь Вселенную, невозможно оставаться внешним наблюдателем. Более того, космология должна обходиться без двух важных методологических аспектов, присущих другим наукам. В науке, как правило, эксперимент многократно повторяется. Опыт с Вселенной мы не в состоянии повторить, как не можем подготовить систему. Это существенно затрудняет изучение мира в масштабах Вселенной. И все же мы хотели бы распространить физическую теорию до космологических масштабов. На первый взгляд теории, хорошо работающие в части Вселенной, легко распространить на Вселенную. Но это не так (см. главы 8 и 9). Ньютонова картина мира с неизменными свойствами частиц и законами не годится для описания Вселенной в целом: этому препятствует сама теория. Я понимаю, что этот подход идет вразрез с представлениями и опытом многих моих коллег, но я лишь прошу читателя уделить внимание части II. Я продемонстрирую (в общих чертах и на конкретных экспериментах), что при любой попытке расширить стандартную теорию до космологического масштаба природа щедро одаривает нас парадоксами, противоречиями и вопросами, на которые нет ответов. Среди них – неспособность стандартной теории учитывать выбор, сделанный природой на ранней стадии жизни Вселенной: выбор начальных условий и выбор самих законов природы. Некоторые современные книги по космологии представляют собой попытки весьма умных людей преодолеть указанные противоречия. Популярно представление, будто наша Вселенная – лишь одна из огромного (или бесконечного) множества подобных ей. Это представление основано на методологической ошибке. Наши теории подтверждаются на уровне Вселенной, лишь если она есть часть чего-либо большего. Таким образом, мы придумали мир, который наполнили другими Вселенными. Этот подход ненаучен: мы не можем ни доказать, ни опровергнуть существование других Вселенных, не связанных причинно-следственной связью с нашей собственной[5 - Единственное исключение (см. главу 11) – если наша Вселенная – типичный представитель коллекции Вселенных.]. Я собираюсь предложить альтернативный подход: следует искать новую теорию, применимую к Вселенной в целом, свободную от парадоксов, способную дать ответы на вопросы, пока остающиеся без ответов, и сделать предсказания для космологических наблюдений. Пока у меня нет такой теории, но я хочу предложить ряд принципов, которые помогут ее создать (см. главу 10). Я продемонстрирую, как эти принципы могут привести к новым гипотезам и моделям Вселенной, указывающим путь к истинной космологической теории. Центральным ее принципом является реальность времени и гипотеза об эволюции законов природы. Мысль о меняющихся законах природы не нова[6 - Некоторые читатели сразу спросят, должны ли быть законы, управляющие эволюцией законов. О проблеме метазакона см. главу 19.]. Американский философ Чарльз С. Пирс писал еще в 1891 году[7 - Пер. К. Голубович. – Прим. пер.]: Предполагать, что универсальные законы природы могут быть поняты разумом и однако же не иметь никакого обоснования своим особенным формам, оставаясь необъяснимыми и иррациональными, – позиция вряд ли оправданная. Единообразия – это и есть те самые факты, которые необходимо объяснять… Закон – это par exellence [преимущественно] вещь, требующая объяснений… Единственно возможный путь объяснить законы природы и единообразие в целом – предположить, что они являются результатом эволюции[8 - Peirce, Charles Sanders The Architecture of Theories // The Monist, 1:2, 161–176 (1891).]. А современный философ Роберту Мангабейра Унгер отметил: Вы можете проследить, как изменялись свойства Вселенной от ее рождения до нашего времени. Но вы не можете доказать, что этот набор свойств – единственный из возможных… Раньше или позже во Вселенной могут появиться совсем другие законы… Установить законы природы – это не то же, что описать или объяснить все возможные пути развития всех возможных Вселенных. Существует лишь относительное различие между законообразным объяснением и описанием отдельной исторической последовательности[9 - Unger, Roberto Mangabeira Social Theory: Its Situation and Its Task, vol. 2 of Politics. New York: Verso, 2004. Pp. 179–180.]. Поль Дирак (вместе с Эйнштейном и Бором принадлежащий к числу тех, кто наиболее сильно повлиял в XX веке на физику) рассуждал: “В самом начале законы природы, вероятно, сильно отличались от нынешних… Следует предположить, что законы природы со временем меняются, а не остаются одинаковыми в пространстве-времени”[10 - Dirac, Paul A. M. The Relation Between Mathematics and Physics // Proc. Roy. Soc. (Edinburgh) 59: 122–129 (1939).]. Великий американский физик Джон А. Уилер также полагал, что законы эволюционируют. Он считал Большой взрыв одним из событий, преобразовавших законы природы: “Нет никаких законов, кроме закона, утверждающего отсутствие законов”[11 - Цит по: Gleick, James Genius: the Life and Science of Richard Feynman. New York: Pantheon, 1992. P. 93.]. Даже ученик Уилера, великий Ричард Фейнман, в интервью как-то заявил: “Единственной отраслью науки, не допускающей вопросов об эволюции, является физика. Мы говорим о законах природы… но как они стали такими, какие есть? Может статься… это вопрос исторического развития, эволюции”[12 - Richard Feynman – Take the World from another Point of View / NOVA (PBS, 1973). Транскрипт можно найти здесь: http://calteches.library.caltech.edu/35/2/PointofView.htm (http://calteches.library.caltech.edu/35/2/PointofView.htm).]. В книге “Жизнь космоса” (1997) я описал механизм эволюции законов природы, моделью для которого послужила биологическая эволюция[13 - См.: Smolin, Lee Did the Universe Evolve? // Class. Quantum. Grav. 9: 173–191 (1992).]. Я предположил, что Вселенные могут образовывать зародыши внутри черных дыр и что всякий раз, когда это происходит, законы физики слегка изменяются. В этой теории законы играют роль генов, а Вселенная отражает выбор законов при ее рождении точно так, как организм воплощает генома. Как и гены, законы природы могут подвергаться случайным мутациям. Вдохновленный достижениями теории струн, я представил, что поиск универсальной теории приведет нас не к “теории всего”, а к большому набору возможных законов природы. Я назвал это ландшафтом теорий (по аналогии с адаптивным ландшафтом в генетике). Этой теме я посвятил главу 11 данной книги (а здесь прибавлю лишь, что теория естественного космологического отбора делает несколько предсказаний, которые пока никто не опроверг, несмотря на неоднократно представлявшиеся возможности). В последнее десятилетие многие физики-теоретики, занимающиеся теорией струн, восприняли концепцию ландшафта теорий, и вопрос о том, как Вселенная выбирает законы, обрел актуальность. Ответ (ниже я постараюсь это доказать) можно получить лишь в рамках космологической модели, в которой время реально, а законы природы эволюционируют со временем. Законы не даются Вселенной извне. Ни один внешний объект, сверхъестественный либо математический, не указывает заранее, какими должны быть законы природы. Они не изъяты из времени и не ждут рождения Вселенной, а появляются и эволюционируют вместе с ней. Возможно даже, что новые законы физики, как в биологии, могут возникать из упорядочения нового явления в ходе эволюции Вселенной. Кто-то усмотрит в отрицании вечных законов отступление от целей самой науки. Я же вижу здесь сбрасывание за борт метафизического балласта, мешающего поискам истины. Ниже я приведу примеры того, как мысль об эволюционирующих законах ведет к такой космологии, которая способна делать проверяемые в эксперименте предсказания. Насколько мне известно, первым ученым эпохи научной революции, размышлявшим о теории всей Вселенной, был Готфрид Вильгельм Лейбниц. (Между прочим он оспаривал у Ньютона приоритет открытия дифференциального исчисления, предвосхитил современную логику, разработал систему двоичного исчисления и много чего еще. Его называли умнейшим человеком в истории.) Лейбниц сформулировал принцип, ставший базисным для космологии – принцип достаточного основания: при истолковании Вселенной любой выбор должен иметь рациональное объяснение. То есть должен иметься ответ на любой вопрос вида: “Почему Вселенная обладает характеристикой x, а не y?” Если Бог создал мир, то у него, вероятно, не было альтернативного плана. Принцип Лейбница оказал огромное влияние на физику и продолжает служить подспорьем при выстраивании космологической теории. В картине мира Лейбница все сущее находится не в пространстве, а погружено в сеть взаимосвязей. Эти связи определяют пространство (а не наоборот). Сегодня идея Вселенной, представляющей собою сеть, пропитывает современную физику, биологию и компьютерные науки. В реляционном мире (где связи первичны по отношению к пространству) нет пустоты. Ньютон, напротив, считал пространство первичным и абсолютным (это означало, что атомы определяются исходя из их положения в пространстве, однако на пространство они никак не влияют). В мире связей нет такой асимметрии. Субъекты могут быть частично автономны, но их возможности определяются связями, соединяющими их в вечно меняющуюся динамическую сеть. Из принципа Лейбница следует (см. главу 3) отсутствие абсолютного времени, слепо метящего события. Время – следствие изменений. В неизменном мире нет времени. Философы утверждают, что время относительно, что оно – свойство отношений, таких как причинная зависимость. Аналогично и пространство может быть относительным. В самом деле, любое свойство объекта в природе должно быть отражением динамических[14 - Я часто использую слово “динамический”, то есть “неустойчивый”, “изменчивый”, “подчиняющийся закону”.] отношений между этим и другими объектами. Принципы Лейбница противоречат ньютоновой физике, и ученое сообщество их приняло не сразу. Эйнштейн использовал принципы Лейбница в качестве обоснования теории относительности, заменившей ньютонову физику. Принципы Лейбница также реализованы в квантовой механике. Я называю революцию в физике XX века реляционной. Задача объединения физики и, в частности, объединение квантовой теории с общей теорией относительности – в широком смысле задача по завершению реляционной революции. Реляционная революция идет полным ходом. Пример – дарвинистская революция в биологии: понятие биологического вида определено через отношение к остальным организмам, а гены рассматриваются в контексте набора связанных генов. Все сводится к передаче информации, и нет аналогии ближе, чем связь между передатчиком и приемником посредством канала передачи данных. Либеральной концепции общества, состоящего из свободных, равных и независимых людей (предложенной философом Джоном Локком в качестве отражения физической картины мира его друга Исаака Ньютона), сейчас противопоставляется образ общества связанных друг с другом людей, чья жизнь имеет смысл лишь внутри сети этих взаимоотношений. Идею социальных сетей общество усвоило настолько прочно, что о них говорят все – от политологов-феминисток до гуру делового управления. Интересно, сколько пользователей “Фейсбука” понимает, что их социальная жизнь построена на многообещающем научном принципе? Реляционная революция зашла уже далеко. В то же время она, очевидно, переживает кризис и в некоторых областях остановилась. Несмотря на кризис, идут споры о том, что такое индивид, как возникают новые системы и объекты, а также как понимать Вселенную. Но ни индивид, ни система, ни Вселенная не могут рассматриваться просто как существующие. Они вовлечены в процессы, протекающие во времени. Элементом, без которого мы не ответим на поставленные вопросы, является соображение о том, что индивид, система, Вселенная представляют собой разворачивающиеся во времени процессы. Я постараюсь убедить вас, что реляционная революция должна воспринять понятия времени и текущего момента как фундаментальные свойства реальности. В прежней картине мира индивиды – наиболее мелкие элементы системы: желая узнать, как работает система, вы выделяете одну из частей и изучаете ее. Но как можно выявить свойства самой элементарной части системы? У нее нет составных частей, и, следовательно, редукционизм здесь неприменим. Здесь обширное поле возможностей для зарождающихся программ. Они могут и должны искать объяснение свойств элементарных частиц через сеть их взаимодействий. Это уже происходит. В стандартной модели физики частиц (самой успешной теории элементарных частиц) масса электрона определяется динамически в результате его взаимодействия с другими частицами. Масса – это наиболее фундаментальное свойство элементарной частицы, определяющее силу, которая необходима для изменения движения частицы. В стандартной модели массы всех частиц возникают в результате взаимодействия с другими частицами и определяются в основном одной из них – бозоном Хиггса. Нет абсолютно элементарных частиц: любая представляет собой следствие сети взаимодействий. Возникновение – важное понятие в мире отношений. Свойство чего-либо, собранного из частей, возникает тогда, когда оно не имеет смысла для каждой из частей отдельно. Камень твердый, а вода текуча, но атомы, из которых они состоят, не обладают ни твердостью, ни текучестью. Возникающее свойство часто сохраняется лишь приблизительно, так как оно связано с усреднением или описанием с высоким уровнем абстракции. По мере прогресса науки свойства природы, считавшиеся фундаментальными, оказываются возникшими и приблизительными. Мы прежде думали, что твердые тела, жидкости и газы – это фундаментальные состояния, а сегодня знаем, что эти свойства обусловлены различным расположением атомов. Большинство законов, считавшихся фундаментальными, оказываются вытекающими из еще более фундаментальных и приблизительными. Температура – усредненная энергия хаотично двигающихся атомов, и поэтому законы термодинамики выполняются приблизительно. Я склонен думать, что все, считающееся фундаментальным, будет переосмыслено как вытекающее из еще более фундаментального: гравитация и описывающие ее законы Ньютона и Эйнштейна, законы квантовой механики, даже само пространство. Фундаментальная физическая теория, поиском которой мы заняты, не будет описывать движение материи в пространстве, не будет постулировать гравитационные и электромагнитные взаимодействия как фундаментальные и не будет квантовой. Все эти свойства возникли на сравнительно поздних этапах расширения Вселенной. Но если пространство – возникающее, значит ли это, что и время тоже возникающее? Исчезнет ли оно, если мы пойдем вглубь? В прошлом столетии многие ученые считали, что время возникает из некоего фундаментального свойства природы, при описании которого понятие времени неприменимо. Я уверен (насколько это позволительно ученому), что они ошиблись. Время – вот единственное фундаментальное понятие. Часть I Гравитация: устранение времени Глава 1 Падение Прежде чем начать наше путешествие, прислушаемся к совету древнегреческого философа Гераклита: “Природа любит прятаться”. Возьмем, например, частицы и взаимодействия, которые в современной науке считаются фундаментальными: еще 100 лет назад они скрывались внутри атома. Некоторые из современников Гераклита рассуждали об атомах, однако не знали, существуют ли те вообще. Лишь после Эйнштейна (1905) в науке укрепилось представление, что материя состоит из атомов. А спустя еще шесть лет ученые расщепили атом. Так началось путешествие внутрь атома. Самым значимым исключением из правила Гераклита является гравитация. Это единственная фундаментальная сила, действие которой мы наблюдаем ежедневно. Наш первый жизненный опыт – борьба с силой тяжести. Гравитация стала одним из первых природных явлений, с которым познакомился человек. Тем не менее, свойства падения во многом скрыты и по сей день, и один из таинственных аспектов гравитации – ее связь со временем. – Папа, почему я не могу летать? Мы стояли на третьем этаже и смотрели вниз, на сад позади дома. – Я прыгну и полечу в садик, к маме – вот как эти птицы. “Птица” – это было первое произнесенное моим сыном слово. Обычный ментальный конфликт: с одной стороны, родители желают детям больше свободы, с другой – боятся за них. Я строго сказал, что люди не умеют летать и чтобы он даже не пытался. Сын расплакался. Желая отвлечь его, я рассказал о гравитации – силе, которая удерживает нас на земле, заставляет нас и все предметы падать. Неудивительно, что следом я услышал: “Почему?” Даже трехлетний ребенок знает, что дать название явлению еще не значит объяснить его. Мы затеяли игру: стали бросать игрушки в садик, производя “сперименты” и наблюдая, все ли они падают одинаково. Я задумался над вопросом, который выходит за рамки понимания трехлетнего ребенка. По какой траектории падают предметы? Неудивительно, что этим вопросом не задается трехлетний ребенок – тысячелетиями он, кажется, не возникал вообще ни у кого. Им, вероятно, не задавались ни Аристотель, ни Платон, ни другие античные философы. Первым форму траектории падающих тел исследовал Галилео Галилей. В самом начале XVII века он изложил результаты своих изысканий в трактате “Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению”. Ученый утверждал в этой работе, написанной в 70-летнем возрасте (по приговору инквизиции он сидел под домашним арестом): траектория падающих тел описывается параболой. Этот факт вытекает из другого факта, который первым установил именно Галилей: тела падают с одинаковым ускорением. То, что траектория падающего тела описывается параболой – одно из самых замечательных открытий, сделанных учеными. Падает все – и одинаково. Не имеет значения, из чего и для чего предмет, а также сколько раз, с какой высоты и с какой скоростью мы его бросаем. Мы можем повторять эксперимент сколько душе угодно, и всякий раз предмет будет двигаться по параболе. Эта кривая (все точки плоскости, равноудаленные от данной прямой и данной точки) – одна из самых простых в математике. Рис. 1. Парабола – это геометрическое место точек, равноудаленных от данной прямой и данной точки. Парабола была известна математикам задолго до Галилея. Наблюдение, что падающие тела описывают параболу – один из первых примеров закона природы, то есть регулярного поведения в небольшой части Вселенной. (В данном случае частью Вселенной – ее подсистемой – является сам предмет, падающий вблизи поверхности планеты.) Такое случалось огромное количество раз в разных местах со времен рождения Вселенной. Следовательно, есть множество ситуаций, к которым применим этот закон. Подросший ребенок может спросить: “А о чем это говорит? Почему математический объект, плод нашего воображения, имеет нечто общее с природным явлением? И почему такое распространенное явление, как падение, должно иметь самое простое и красивое во всей геометрии описание?” Со времен Галилея ученые успешно пользуются математикой для описания физических явлений. Сейчас очевидно, что законы физики выражаются на языке математики, однако две тысячи лет (с тех пор, как Евклид сформулировал свои аксиомы) никто не догадывался применить математический закон к описанию движения на Земле. С античности до XVII века ученые знали о параболе, но ни один из них не пожелал выяснить, по какой траектории летит брошенный мячик, выпущенная стрела или любой другой предмет[15 - И это несмотря на многочисленные попытки исламских и средневековых философов понять причины движения.]. Каждый ученый мог сделать открытие, которое сделал Галилей: все, что ему для этого понадобилось, существовало уже в Афинах времен Платона и в Александрии времен Гипатии. Что заставило Галилея применить математику для описания падения тел? Это вопрос из тех, которые легко задать, но на которые трудно ответить. Что такое вообще математика? Как она стала наукой? Математические объекты – плоды чистого мышления. Мы не найдем параболу в природе. Парабола, окружность или прямая, – это идеи. Мы облекаем их в определения: “Окружность – геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки. Парабола – все точки плоскости, равноудаленные от данной прямой и данной точки”. Раз у нас есть определение, мы можем определить свойства кривой. В школе нас учили, что такой вывод может быть формализован и представлять собой доказательство – выстроенные в цепь умозаключения. В этом формальном процессе не остается места наблюдению или измерению[16 - Математики говорят о кривых, числах и так далее как о математических “объектах”, что предполагает их своего рода существование. Вам, возможно, будет удобнее называть их “понятиями”. Я буду использовать оба этих слова.]. Рисунок может иллюстрировать доказанные свойства, но он всегда неточен. Это верно и для знакомых нам кривых: для спины потягивающейся кошки или тросов, на которых подвешен мост. Это лишь приблизительно напоминает математические кривые, и, если приглядеться, мы всегда найдем отклонения от идеальных математических форм. Итак, математика рассматривает нереальные объекты, которые, тем не менее, отражают реальный мир. Каким образом? Отношение между реальным миром и миром математики неочевидно даже в простейших случаях. Что общего у математики и гравитации? Математика играет в разгадке тайны времени роль не меньшую, чем гравитация, и следует знать, как математика соотносится с природой в случае падающих тел. Иначе, когда слышишь утверждение типа: “Вселенная – четырехмерное пространственно-временное многообразие”, ты становишься добычей мистификаторов, которые преподносят метафизические фантазии под научным соусом. Несмотря на то, что в природе не встречаются идеальные окружности или параболы, у них есть общее с материальными объектами свойство: устойчивость по отношению к манипуляциям. Число – отношение длины окружности к ее диаметру – это идея. Но только лишь идея была высказана, как значение стало объективным. Были попытки узаконить значение, и они продемонстрировали наше глубокое непонимание. Мы не можем изменить значение, как бы нам ни хотелось. То же верно для свойств кривых, да и любого математического объекта. Но кривые и числа (даже если они сходны с природными объектами тем, что не зависят от наших желаний) не идентичны природе. В реальном мире всегда присутствует время. Все в потоке времени. Каждое сделанное нами наблюдение имеет временную отметку. Мы и все вещи вокруг нас существуют в течение определенного временного интервала и не существуют до и после него. Математические объекты вне времени. Число не имеет даты рождения, прежде которой оно не существовало или принимало другое значение. Утверждение Евклида о том, что параллельные линии на плоскости не пересекаются, всегда останется верным. Математические утверждения касательно кривых или чисел не требуют временных характеристик. Но как нечто может существовать вне времени?[17 - Не совсем верно говорить, будто математическая истина вне времени: ощущения и мысли приходят в определенные моменты времени, и мы думаем (во времени), кроме прочего, и о математических объектах. Сами по себе они во времени не существуют. Они не рождаются, они не изменяются – они просто есть.] Тысячелетиями люди спорят об этом и не пришли к единому мнению. Но одно предположение существует очень давно: математические объекты существуют вне нашего мира, в другой реальности. Таким образом, существует не два типа объектов, связанных со временем и вечных, а два мира: связанный с временем и вечный. Представление о том, что математические объекты существуют в ином мире, приписывают Платону. Он учил, что математик, говорящий о треугольнике, говорит об идеальном треугольнике: в той же степени реальном, но существующем в ином мире – вне времени. Теорема о сумме углов треугольника, равной 180°, не выполняется точно для любого реального треугольника, но абсолютно верна для идеального треугольника. Когда мы доказываем теорему, мы узнаем о том, что вне времени, и показываем, что теорема была верна в прошлом и будет верна в будущем. Если Платон прав, то мы можем, рассуждая, узнавать вечные истины. Некоторые математики утверждают, что черпают знания из идеального мира. Когда я желаю вкусить платонизма, я приглашаю на обед своего друга Джима Брауна. Мы оба любим вкусно поесть, и во время еды он не спеша и уже в который раз рассказывает мне о своей вере в мир математики, существующий вне времени. Джим – не обычный философ. Его острый ум сочетается с веселым нравом. Вы сразу чувствуете, что он счастлив, и само знакомство с ним делает вас счастливым. Он прекрасно знает все доводы за и против платонизма и охотно обсуждает те, которые не может опровергнуть. Но я так и не смог пошатнуть его веру в существование вневременного мира математических объектов. Я иногда спрашиваю себя: уж не вера ли в идеальный мир делает Джима счастливым? Лишь один вопрос ставит в тупик Джима и других поклонников Платона. Как мы – привязанные ко времени и находящиеся в постоянном контакте с другими объектами мира вещей – можем узнать об устройстве вечного мира математики? Мы проникаем в него путем рассуждений, но можем ли мы быть уверены, что эти рассуждения верны? По сути нет. Время от времени мы обнаруживаем ошибки даже в доказательствах теорем в учебниках, и нет сомнений, что там скрывается еще множество ошибок. Эту проблему можно решить, предположив, что математические объекты не существуют вовсе – даже вне времени. Но тогда какой смысл рассуждать о несуществующем? Я разговариваю о платонизме еще с одним своим другом – физиком и математиком Роджером Пенроузом. Он убежден, что абсолютная истина мира математики не может быть сформулирована на языке аксиом. Следуя великому логику Курту Геделю, мы можем непосредственно познать математическую истину, которая лежит за рамками формальных аксиоматических доказательств. Однажды он заметил: “Вы абсолютно уверены, что 1 + 1 = 2. Это интуитивный факт, он не подвергается сомнению. 1 + 1 = 2. Вот доказательство того, что наши рассуждения могут преодолеть время. А как насчет 2 + 2 = 4? Вы и в этом не сомневаетесь. 5 + 5 = 10? То же самое. Существует бесконечное количество самоочевидных фактов о вечном математическом мире”. Пенроуз уверен, что наш разум может преодолеть поток восприятия и достигнуть вечности[18 - Многие великие математики в это верят, например Ален Конн. См.: Changeux, Jean-Pierre, and Alain Connes Conversations on Mind, Matter, and Mathematics. Princeton, NJ: Princeton University Press, 1998.]. Как только мы поняли, что падение тел – универсальное явление, мы открыли феномен гравитации. Мы связали универсальное явление нашего мира, относящееся к привязанным ко времени объектам, с идеей из вечного мира. И если вы платонист, как Браун или Пенроуз, то открытие универсальности падения тел по параболе есть не что иное, как доказательство связи между нашим миром и миром вечности и красоты. Простое наблюдение, сделанное Галилеем, приобретает религиозное значение. Оно показывает, как вечность входит в наш мир. Это соображение влечет к науке очень многих – и меня самого. Но сейчас я думаю, что это представление ошибочно. Мы убеждены, что объясняем вещи, привязанные ко времени, с помощью вневременных сущностей. Поскольку у нас нет доступа в мир вечности, рано или поздно мы обнаружим, что сами его придумали. Убеждение, будто нашу Вселенную можно полностью описать с помощью иного мира, отчужденного от всего, что мы можем познать в ощущении, – ерунда. Если мы это принимаем, граница между наукой и мистицизмом размывается. Мы стремимся к трансцендентному. Желание избегнуть боли, смерти, тягот питает религию и мистицизм. Но разве поиск истины превращает математика в жреца? Можем ли мы признать занятия математикой разновидностью религиозной деятельности? Следует ли обращать внимание на рассуждения наиболее рационально мыслящих из нас, математиков, о трансцендентном, об избавлении от “оков жизни”? Более серьезной задачей является описание Вселенной самой по себе: объяснение реального через реальное и привязанного ко времени через привязанное ко времени. Это трудный путь, но он верен. Наградой нам станет понимание значения времени как такового. Глава 2 Время уходит Вообще-то первым связал движение с математикой не Галилей. Но он первым сделал это для движения на Земле. Одна из причин, почему никто не вывел этот закон прежде Галилея, такова: заметить параболическую траекторию движения очень сложно – тела падают достаточно быстро[19 - Интересно, заметил ли кто-нибудь из древних, что струя из фонтана следует параболической траектории? Найдены греческие вазы с рисунками, на которых вода падает по траектории, похожей на параболу, так что математик вполне мог бы поинтересоваться, все ли падающие тела ей следуют.]. Впрочем, задолго до Галилея люди располагали примерами тел, двигающихся достаточно медленно для того, чтобы зарегистрировать траекторию их движения: Солнца, Луны и планет. Платон и его ученики пользовались записями о положении небесных тел, составленными в Египте и Вавилоне. Эти астрономические таблицы содержат циклы. Одни циклы, такие как годовое обращение Солнца, очевидны. Другие, как цикл солнечных затмений (18 лет и 11 дней), менее очевидны. Эти циклы – ключ к пониманию строения Вселенной, и ученые веками пытались расшифровать их. Именно эти попытки стали первыми примерами проникновения математики в науку. Но это еще не все. Галилей не пользовался инструментами, которые не были бы известны еще грекам. Поэтому должна иметься глубокая причина, не позволившая древним сделать открытие прежде Галилея. Они чего-то не понимали в движении на Земле? Верили во что-то такое, во что уже не верил Галилей? Рассмотрим наблюдение наиболее простой траектории движения, сделанное еще античными астрономами. Греческое слово “планета” означает “странник”, но планеты не бродят по всему небу. Они двигаются вдоль гигантской окружности (эклиптики), положение которой фиксировано на звездном небе. Обнаружение эклиптики было первым шагом в расшифровке записей о положении небесных тел. Окружность – геометрическая фигура. Но что это значит: движение планет представляется окружностью? Это визит гостя из мира вечности в наш преходящий мир? Так, возможно, думаем мы, но в древности люди считали иначе. Античный мир делился на две части: земной мир (арену рождений и смерти, превращений и разрушений) и небесный – вместилище вечного совершенства. Для греков небо, населенное божествами, было миром трансцендентным, неизменным, вечным. Аристотель заметил: “Согласно [историческим] преданиям, передававшимся из поколения в поколение, ни во всем высочайшем небе, ни в какой-либо из его частей за все прошедшее время не наблюдалось никаких изменений”[20 - Аристотель, “О небе”, кн. 1, гл. 3. [Пер. А. Лебедева. – Прим. пер.]]. Если объекты божественного мира движутся, то это движение совершенно и вечно. Древним было очевидно, что планеты движутся по окружности, поскольку, будучи совершенными, они могут двигаться лишь по самой совершенной кривой. А земной мир несовершенен, и описывать божественными линиями движение тел на Земле просто кощунственно. Аристотель делил Вселенную на подлунную и надлунную области. В подлунной области все сложено из четырех элементов: земли, воздуха, огня и воды. Каждый элемент совершает естественное движение. Например, земля стремится к центру мира. Перемены в подлунной области происходят в результате смешения четырех элементов. Эфир – пятый элемент, квинтэссенция – образует надлунную область и перемещающиеся там тела. Такое деление обосновывало связь с трансцендентным миром. Бог, небеса, совершенство – все это выше нас, а мы прикованы к земле. С этой точки зрения наблюдение за движением небесных тел вдоль математической кривой имело смысл просто потому, что и математика, и небесный мир неподвластны времени. Познать их означало воспарить над землей. Математика вошла в науку как выражение веры в совершенство небесного. Вечные законы не могут быть целиком неверны, поскольку они несут черты метафизического перехода. Несмотря на то, что наука ушла довольно далеко от античных представлений, они по-прежнему влияют на нашу речь. Мы говорим: быть на высоте положения. Вдохновение приходит свыше. А низко пасть подразумевает утрату контроля над собой. Более того, оппозиция подниматься – падать символизирует конфликт между телесным и возвышенным. Рай над нами, под нами – ад. Когда мы умираем, то уходим в землю. Бог у нас над головой. Еще одной областью, где древние прозревали трансцендентное, была музыка. Слушая музыку, мы испытываем ощущение совершенства прекрасного, которое нас отрывает от времени. Неудивительно, что древние считали музыку тайной, разгадать которую можно с помощью математики. Среди великих открытий, сделанных в школе Пифагора, была связь музыкальной гармонии с числовыми закономерностями. Для древних это был второй пример связи математики с небесами. К сожалению, мы мало знаем о Пифагоре и его учениках, но легко представить, что им уже была известна закономерность: музыкальный и математический таланты нередко сочетаются. Сейчас мы сказали бы, что и математики и музыканты способны создавать абстракции и манипулировать ими. В детстве Галилео Галилей обучался музыке[21 - Я знаю нескольких математиков и физиков, которым пришлось выбирать между музыкой и наукой. Жуан Магейжу, прежде чем заняться физикой, готовился стать композитором. Будучи человеком крайностей, он говорит, что с тех пор не садился за фортепиано. Знакомство с ним помогает мне представить характер Галилея.]. Его отец, Винченцо Галилей, был композитором и влиятельным музыкальным теоретиком. Рассказывают, что у себя дома в Пизе он натягивал струны, чтобы Галилео мог познать связь между гармонией и числами. Как-то Галилео, заскучавший во время церковной службы, заметил, что время, за которое раскачивающееся кадило совершает полный период, зависит от длины веревки, на которой оно подвешено. Это стало одним из первых его открытий. Как ему удалось прийти к этому? Сейчас мы можем воспользоваться секундомером или часами, но у Галилея их не было. Скорее всего, он напевал про себя. Как он говорил, уму удавалось измерять время с точностью до 1/10 частоты пульса. Галилей был популяризатором идей Коперника и писал на народном итальянском, а не на латыни, языке науки того времени, излагая свои мысли в виде диалогов, персонажи которых спорят о науках так же просто, как если бы они обедали или гуляли. Поэтому Галилей прослыл вольнодумцем, который отрицал авторитет церкви и университетов и апеллировал к здравому смыслу. Конечно, Галилей был выдающимся полемистом и экспериментатором, но незаурядной его работу делают поставленные им вопросы. Он был отчасти свободен от античных догм. Древнее разделение мира на надлунный и подлунный, которое долго препятствовало развитию мысли, не впечатляло Галилея. Леонардо да Винчи нашел пропорции и гармонию в статических формах, а Галилей искал математическую гармонию в движении, например в колебаниях маятника или скатывании шара по наклонной плоскости. Галилей открыл, что совершенство небес – иллюзия. Не он изобрел телескоп. И не один Галилей наблюдал в него небо. Но лишь Галилей во всеуслышание заявил: то, что он увидел в телескоп, далеко от совершенства. На Солнце есть пятна. На Луне (форма которой отличается от сферы), как и на Земле, существуют горы. Сатурн имеет странную форму, у Юпитера есть спутники, а на небе звезд гораздо больше, чем видно невооруженным глазом. В 1577 году датский астроном Тихо Браге наблюдал комету. Он был последним из великих астрономов, не пользовавшихся телескопом, и все же ему с помощниками удалось составить таблицы движения планет, которые превосходили все прежние. Эти таблицы оставались нерасшифрованными до 1600 года, когда Тихо Браге пригласил Иоганна Кеплера поработать с ним. Планеты передвигаются по эклиптике, но неравномерно. Все они движутся в одном направлении, но в какой-то момент останавливаются и начинают непродолжительное время двигаться вспять. Попятное движение планет являлось для древних великой тайной. Дело здесь вот в чем. Земля – тоже планета, и обращается она вокруг Солнца. Остановка и попятное движение планет – кажущийся эффект для наблюдателя на Земле. Марс перемещается по небу в восточном направлении тогда, когда он впереди нас, и меняет движение на попятное, когда мы его догоняем. Древние не понимали этого, поскольку считали, что Земля расположена в центре Вселенной и находится в состоянии вечного покоя. Античные астрономы объясняли попятное движение планет их внутренним движением. Для этого они изобрели очень неудобную систему, в которой каждая планета вращалась по малой окружности, центр которой, в свою очередь, вращался по большой окружности вокруг Земли. Эпициклы, эти малые орбиты, вращались с периодом одного земного года, так как являлись отражением вращения самой Земли. Для более точной модели, однако, понадобилось гораздо больше орбит. Модель учитывала одновременное движение планет по 55 орбитам. Присвоив большим орбитам правильные наблюдаемые значения периодов обращений планет, античный астроном Птолемей смог откалибровать свою модель. Спустя несколько столетий арабские астрономы внесли в нее поправки. Ко времени Тихо Браге модель предсказывала положение небесных тел с точностью 1/1000 – достаточно хорошо, чтобы согласовываться с большинством наблюдений того времени. Модель Птолемея была математически безупречна, и ее успех убеждал астрономов и теологов, что предположения этой модели верны. Да и как они могут быть ошибочны, если наблюдения их многократно подтвердили? Рис. 2. Вселенная по Птолемею[22 - Рисунок из “Космографии” Петера Апиана (1539). Воспр. по изд.: Koyre, Alexandre From the Closed World to the Infinite Universe. Baltimore, MD; Johns Hopkins, 1957.]. Вот вам пример того, что ни математическая красота модели, ни согласие ее предсказаний с экспериментом не гарантируют истинности предположений, на которых эта модель основана. Птолемей и Аристотель были учеными не в меньшей степени, чем современные ученые. Просто им не повезло: оказалось, что несколько ошибочных гипотез неплохо согласуются. Не существует никакого противоядия от самообмана, кроме продолжения научных занятий. Коперник задумался над тем, что все эпициклы имеют один и тот же период обращения и вращаются в фазе с Солнцем. Он поместил Землю на ее правильное, известное нам сейчас место, а Солнце – около центра Вселенной. Это сильно упростило модель, но шло вразрез с античной космологией. С какой стати земной мир должен отличаться от небес, если Земля – лишь одна из планет? Однако модель Коперника не была до конца революционной. Даже когда движение Земли было учтено, орбиты планет не являли собой правильные окружности. Коперник не мог избавиться от мысли, что движение на небе должно складываться из движений по окружностям, и вслед за Птолемеем ввел в модель дополнительные эпициклы, требуемые для описания наблюдений. Сильнее всего от окружности отличается орбита Марса. Иоганну Кеплеру крупно повезло (и науке тоже): именно ему Тихо Браге поручил изучить орбиту Марса. Кеплер спустя много лет после того как он прекратил работать с Браге, обнаружил, что Марс перемещается не по окружности, а по эллипсу. Современному читателю может быть не так очевидно, насколько революционной была эта догадка. В геоцентрической модели орбиты планет, вращающихся вокруг Земли, не были замкнуты. Орбита каждой планеты состояла из двух движений по окружности, каждое со своим периодом. Лишь в гелиоцентрической модели орбиты замкнуты и приобретает смысл вопрос о форме орбиты. Таким образом, помещая Солнце в центр, мы получаем несколько более стройную систему мироздания. Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/li-smolin/vozvraschenie-vremeni-ot-antichnoy-kosmogonii-k-kosmologii-buduschego/?lfrom=334617187) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом. notes Примечания 1 Эту книгу можно рассматривать как введение к серьезной работе по естествознанию (или ее популярное изложение), которую я готовлю вместе с Роберту Мангабейрой Унгером. В книге с рабочим заглавием “Сингулярная Вселенная и реальность времени” мы приводим доводы в пользу реальности времени и эволюции законов природы, а также рассматриваем варианты решения дилеммы метазаконов (см. главу 19). 2 См.: Smolin, Lee A Perspective on the Landscape Problem / arXiv:1202.3373v1 [physics.hist-ph] (2012); Smolin, Lee The Unique Universe // Phys. World, June 2, 21–26 (2009); Smolin, Lee The Case for Background Independence / In: The Structural Foundations of Quantum Gravity, ed. Rickles, Dean, et al. New York: Oxford University Press, 2007; Smolin, Lee The Present Moment in Quantum Cosmology: Challenges for the Argument for the Elimination of Time / In: Time and the Instant, ed. Durie, Robin. Manchester, U. K.: Clinamen Press, 2000; Smolin, Lee Thinking in Time Versus Thinking Outside of Time / In: This Will Make You Smarter. Ed. Brockman, John. New York: Harper Perennial, 2012; Kauffman, Stuart, and Lee Smolin A Possible Solution to the Problem of Time in Quantum Cosmology / arXiv: gr-qc/9703026v1 (1997). 3 Пер. О. Варшавер. – Прим. пер. 4 И не только время: он преуменьшает все аспекты нашего восприятия (цветной, сенсорный, музыка, эмоции, сложные мысли), сводя их к перегруппировке атомов. В этом суть атомистического взгляд на мир, предложенного Демокритом и Лукрецием, выраженного Локком в теории первичных и вторичных качеств и, похоже, целиком подтвержденного наукой. С этой точки зрения реально движение – в современном понимании (квантовые переходы). Все прочее – до некоторой степени иллюзия. Я не собираюсь ни оспаривать эти воззрения (они в основном истинны), ни подкреплять их наукой. Моя цель – оспорить утверждение, будто время иллюзорно. 5 Единственное исключение (см. главу 11) – если наша Вселенная – типичный представитель коллекции Вселенных. 6 Некоторые читатели сразу спросят, должны ли быть законы, управляющие эволюцией законов. О проблеме метазакона см. главу 19. 7 Пер. К. Голубович. – Прим. пер. 8 Peirce, Charles Sanders The Architecture of Theories // The Monist, 1:2, 161–176 (1891). 9 Unger, Roberto Mangabeira Social Theory: Its Situation and Its Task, vol. 2 of Politics. New York: Verso, 2004. Pp. 179–180. 10 Dirac, Paul A. M. The Relation Between Mathematics and Physics // Proc. Roy. Soc. (Edinburgh) 59: 122–129 (1939). 11 Цит по: Gleick, James Genius: the Life and Science of Richard Feynman. New York: Pantheon, 1992. P. 93. 12 Richard Feynman – Take the World from another Point of View / NOVA (PBS, 1973). Транскрипт можно найти здесь: http://calteches.library.caltech.edu/35/2/PointofView.htm (http://calteches.library.caltech.edu/35/2/PointofView.htm). 13 См.: Smolin, Lee Did the Universe Evolve? // Class. Quantum. Grav. 9: 173–191 (1992). 14 Я часто использую слово “динамический”, то есть “неустойчивый”, “изменчивый”, “подчиняющийся закону”. 15 И это несмотря на многочисленные попытки исламских и средневековых философов понять причины движения. 16 Математики говорят о кривых, числах и так далее как о математических “объектах”, что предполагает их своего рода существование. Вам, возможно, будет удобнее называть их “понятиями”. Я буду использовать оба этих слова. 17 Не совсем верно говорить, будто математическая истина вне времени: ощущения и мысли приходят в определенные моменты времени, и мы думаем (во времени), кроме прочего, и о математических объектах. Сами по себе они во времени не существуют. Они не рождаются, они не изменяются – они просто есть. 18 Многие великие математики в это верят, например Ален Конн. См.: Changeux, Jean-Pierre, and Alain Connes Conversations on Mind, Matter, and Mathematics. Princeton, NJ: Princeton University Press, 1998. 19 Интересно, заметил ли кто-нибудь из древних, что струя из фонтана следует параболической траектории? Найдены греческие вазы с рисунками, на которых вода падает по траектории, похожей на параболу, так что математик вполне мог бы поинтересоваться, все ли падающие тела ей следуют. 20 Аристотель, “О небе”, кн. 1, гл. 3. [Пер. А. Лебедева. – Прим. пер.] 21 Я знаю нескольких математиков и физиков, которым пришлось выбирать между музыкой и наукой. Жуан Магейжу, прежде чем заняться физикой, готовился стать композитором. Будучи человеком крайностей, он говорит, что с тех пор не садился за фортепиано. Знакомство с ним помогает мне представить характер Галилея. 22 Рисунок из “Космографии” Петера Апиана (1539). Воспр. по изд.: Koyre, Alexandre From the Closed World to the Infinite Universe. Baltimore, MD; Johns Hopkins, 1957.
КУПИТЬ И СКАЧАТЬ ЗА: 319.00 руб.