Сетевая библиотекаСетевая библиотека

Видео на вашем компьютере: ТВ тюнеры, захват кадра, видеомонтаж, DVD

Видео на вашем компьютере: ТВ тюнеры, захват кадра, видеомонтаж, DVD
Видео на вашем компьютере: ТВ тюнеры, захват кадра, видеомонтаж, DVD Оксана Александровна Буковецкая Компьютерное видео многолико: это и просмотр телепередач, и цифровые видеофильмы, и системы безопасности. В предлагаемом издании освещаются почти все аспекты данной области современных технологий – от начальных этапов оцифровки до ретуши полученных кадров и от простейших плат захвата кадра до систем нелинейного монтажа. Цель книги – дать возможность любому, даже неискушенному пользователю самостоятельно выбрать, установить и настроить необходимые именно ему оборудование и программы. Большое внимание уделено устройствам для домашнего использования: ТВ тюнерам, в том числе внешним, а также простейшим системам цифровой видеозаписи. Особый раздел посвящен стремительно набирающему популярность формату DVD. Помимо описания конкретных устройств и ПО представлены теоретические данные, необходимые для предотвращения возможных проблем. Впервые в популярной форме рассмотрено применение компьютерного видео в системах безопасности и дан подробный обзор существующих на рынке систем. Книга предназначена для начинающих и опытных пользователей, ранее не сталкивавшихся с установкой и настройкой компьютерных видеосистем. Некоторые разделы могут быть полезны и профессионалам в качестве справочного материала. Оксана Александровна Буковецкая Видео на вашем компьютере: ТВ тюнеры, захват кадра, видеомонтаж, DVD Введение Устройства ввода в компьютер невербальной (не буквенно-цифровой) информации еще совсем недавно казались экзотикой, затем – весьма дорогостоящими излишествами, и только в последние годы стали будничной реальностью. Все последствия появления у ПК «глаз» и «ушей», наверное, невозможно вообразить. Вероятно, кто-то из вас, дорогие читатели, хотя бы раз испытал радость встречи на видеоконференции с друзьями и коллегами, которые уже давно там, куда доехать все никак не хватает времени или (и) денег. Другие, возможно, совсем недавно делали ко дню рождения шефа коллаж, «усаживая» его в роллс-ройс, найденный на одном из «митинских» компакт-дисков. Фрагменты «живого» видео в компьютерных играх уже никого не удивляют. С другой стороны, ввод видеоинформации является естественной частью многих проектов, которые сейчас кажутся почти фантастическими, но наверняка будут реализованы быстрее, чем мы это предполагаем. Это, например, «интеллектуальный дом», послушный почти что мановению руки своего хозяина, или недремлющий электронный сторож, умеющий отличать зашедшего в гости соседа от подозрительного незнакомца. Конечно, данная книга ориентирована не на разработчиков новейших технологий. Она предназначена тем пользователям, для которых компьютер не просто удобная пишущая машинка. Случилось так, что их отношение к системам ввода звука и изображения принципиально различны: почти у каждого установлена звуковая карта, но записью звука занимаются в основном профессионалы. Устройства ввода изображения менее распространены, однако работа с изображениями является для компьютерного мира чем-то аналогичным политике и медицине в мире бытовом: каждый считает себя специалистом в этих областях. Конечно, ввод видеосигналов в компьютер или, другими словами, видеоввод – не единственный и на сегодняшний день даже не основной способ получения оцифрованных изображений. По распространенности этот метод безусловно уступает сканированию. Однако по вопросам сканирования и последующей обработки изображений в последнее время нетрудно найти весьма неплохую и одновременно понятную для начинающего литературу. Что же касается изданий, рассматривающих проблемы, возникающие при видеовводе, их практически нет. Легко найти информацию, относящуюся к видеомонтажу, но это лишь одно из многочисленных приложений видеоввода. В результате компьютерное видео стало одной из самых «мифологизированных» областей компьютерных технологий. Менеджерам фирм, поставляющим платы видеоввода, порой по несколько раз на дню на вопросы возможных покупателей приходится отвечать «к сожалению, это невозможно» или «такого устройства не существует». Несколько лет назад автору довелось участвовать в весьма запоминающемся «приключении», суть которого заключалась в подготовке фона для плаката формата А1 на основе кадров, полученных путем видеоввода. В конце концов, цель была достигнута, но затраченные силы, безусловно, заслуживали более достойного применения. Особую пикантность ситуации придавало то, что никаких препятствий (кроме крайнего авантюризма всех участников) для того, чтобы заснять необходимый материал на слайд, не было. Я думаю, что на подобные грабли (по просьбе клиента или по собственному… м-м… недомыслию) наступала не одна команда дизайнеров. Одна из целей этой книги – дать ясное представление о том, что может и чего не может видеоввод, чтобы помочь избежать неоправданных затрат сил и времени. Другая и, возможно, главная цель – помочь тем, у кого нет диплома инженера, но есть желание работать не вслепую, разобраться с процессами, происходящими при видеовводе. Естественным образом отсюда вытекает и следующая задача: показать причины возникающих проблем и способы их устранения или, по меньшей мере, как ликвидировать нежелательные последствия. Наконец, еще одна важная цель: достаточно подробно рассказать о имеющихся на рынке устройствах для видеоввода, чтобы каждый мог выбрать то, что наиболее соответствует его задачам. Сразу следует оговориться, что в этой книге рассматривались только устройства потребительского класса стоимостью до 1000 долларов. Профессиональная аппаратура иногда упоминается, но задача ее детального обзора не ставилась. Кроме того, «за бортом» осталось откровенно устаревшее оборудование, например платы на шине ISA. Не имелось в виду и составление полного каталога, поэтому некоторые однотипные, или, на взгляд автора, малоинтересные изделия не вошли в обзор. В отношении устройств, протестированных автором, приведены не только технические характеристики, но и даны впечатления пользователя. При описании части оборудования пришлось ограничиться информацией от производителей. Автор заранее приносит извинения за ограниченность обзора, поскольку за время подготовки книги, скорее всего, появились новые интересные изделия и, возможно, программы. Первая глава данной книги содержит общую характеристику систем видеоввода. Вторая посвящена телевидению и аналоговому видео. Третья – цифровому видео, то есть принципам оцифровки и хранения данных и наиболее распространенным форматам. В четвертой главе приводятся описания компьютерных видеосистем основных типов: внутренних и внешних ТВ тюнеров и плат захвата кадра, устройств линейного и нелинейного монтажа, декодеров MPEG и видеомультиплексоров. Пятая глава посвящена программному обеспечению для ввода кадров и их последовательностей, а также программным DVD– и MPEG-проигрывателям. Приемы работы по нелинейному монтажу не рассматривались, поскольку представляют собой весьма специфическую тему, достойную отдельной книги. Кроме того, этот материал рассмотрен в книге, посвященной Adobe Premiere, недавно вышедшей в издательстве «ДМК». В шестой глава рассказывается об использовании компьютерного видео в системах безопасности и контроля В седьмой главе представлены фирмы, производящие и поставляющие компьютерные видеосистемы и системы безопасности. Наконец, в восьмой главе содержатся рекомендации по обработке и ретушированию изображений, полученных путем захвата кадров. Автор приносит глубокую благодарность независимому специалисту Александру Федосееву за участие в тестировании, ведущему конструктору фирмы «Нейроинформатика» Дмитрию Суверину за ценные критические замечания по тексту книги, а также сотрудникам фирм Respect, «Мультимедиа клуб», IP Labs за предоставление оборудования для тестирования. Глава I Для чего необходим компьютерный видеоввод • Каким бывает компьютерное видео • Устройства внешние и внутренние – что выбрать • Внутренние устройства Компьютерный видеоввод – это модно. Однако перед тем как приступить к освоению компьютерного видео, стоит выяснить, решает ли оно именно ваши задачи. Для этого необходимо иметь представление о том, какие бывают устройства видеоввода и каковы их возможности. Не вдаваясь в технические детали (им будут посвящены следующие две главы), мы кратко охарактеризуем основные типы систем компьютерного видео и их характеристики без упоминания торговых марок и особенностей конкретного оборудования, поэтому подготовленный читатель может эту главу пропустить. Каким бывает компьютерное видео Современные компьютерные видеоустройства могут использоваться для решения трех достаточно несхожих задач: • захвата отдельного кадра. Для этого применяются платы захвата кадра (фрейм-грабберы) и цифровые фотоаппараты; • вывода на экран телевизионных изображений. Эту задачу решают ТВ тюнеры различного исполнения; • видеомонтажа. Этот процесс выполняется с помощью специальных плат или внешних устройств, а также цифровых видеокамер. Какой набор оборудования следует предпочесть для решения тех или иных задач, мы разберем в этой главе чуть ниже. Оцифровку и запись в том или ином формате отдельного изображения из видеоряда могут выполнять не только специально предназначенные для этого системы, но практически все устройства видеоввода, например платы линейного и нелинейного монтажа и ТВ тюнеры. Однако обратное утверждение неверно: не все платы захвата кадра являются одновременно ТВ тюнерами, и уж тем более нельзя при помощи простых устройств захвата кадров или ТВ тюнеров осуществлять качественный видеомонтаж. Иногда, впрочем, производители устройства утверждают, что это возможно, но в реальных условиях на обработку видеоролика продолжительностью меньше минуты порой может потребоваться три недели непрерывной работы. Устройства захвата кадра и ТВ тюнеры на сегодняшний день достаточно дешевы. Наименьшую цену имеют платы, осуществляющие только захват кадра. Отпускная цена этих устройств у некоторых тайваньских фирм – менее 20 долларов. Качество их работы вполне удовлетворительное, поскольку во всех этих устройствах используется та же микросхема, что и в более дорогих платах. Если вас, дорогие читатели, интересуют именно такие устройства, поищите информацию о них в Internet, и наверняка не пройдет и получаса, как вы найдете что-нибудь интересное. Естественно, приведенная выше цена соответствует мелкому опту. Большинству российских фирм не очень выгодно торговать столь дешевым «железом», поэтому эти платы можно найти в основном в составе наборов оборудования (комплектов для Internet-конференций) вместе с малогабаритной ТВ камерой и микрофоном, причем в очень красивой, большой и дорогой коробке и по цене в 3–5 раз дороже. Но в любом случае устройство может обойтись вам в сумму менее 80 долларов. ТВ тюнер будет стоить несколько дороже, но все равно его цена вряд ли перевалит за 100 долларов. Цена устройств нелинейного монтажа может колебаться от (примерно) восьмисот до нескольких десятков тысяч долларов. Захват кадра Для захвата кадра используются как внутренние устройства – платы, называемые фрейм-грабберами, – так и цифровые фотоаппараты. Почти все существующие на сегодняшний день платы сходны по качеству получаемого изображения, поскольку используют одну и ту же микросхему производства компании Brooktree. Подробный обзор плат и их характеристик вы найдете в главе 4. Цифровые фотоаппараты, напротив, весьма значительно различаются и по качеству, и по цене. В данной главе мы лишь кратко остановимся на общих особенностях работы систем захвата кадров. Чтобы получить отдельное оцифрованное изображение, совсем не обязательно иметь дело с видео, ведь изображение может быть получено и более привычным способом (съемка на слайд или фотобумагу и последующее сканирование). Что же предпочесть? Ответ на этот вопрос во многом зависит от того, какой объект вы хотите «увековечить», а также от требуемого размера кадра. Даже на самых «продвинутых» устройствах видеоввода (цифровых фотоаппаратах профессионального качества) на сегодняшний день невозможно получить кадр размером более 2–3 тысяч пикселов по горизонтали. То есть при типографской печати с разрешением 300 dpi (точек на дюйм) линейный размер картинки (3000/300) равняется 10 дюймам, или примерно 25 см. И это для самых дорогих аппаратов ценой в несколько тысяч долларов. Для наиболее распространенных на сегодняшний день и доступных по цене устройств размер картинки составляет 768x512 пикселов. Широко распространенное значение в 768 пикселов обусловлено существующими стандартами в обычном вещательном телевидении, которые подробно рассматриваются в следующей главе. Изображение, полученное подобным образом, имеет разрешение 72 dpi; следовательно, размер по горизонтали равняется 10,6 дюйма (768/72), а по вертикали – около 7 дюймов. Но для печати нужно более высокое разрешение. При печати с разрешением 300 dpi ширина кадра с таким числом точек окажется равной примерно 2,5 дюймам, или 6,4 см. Конечно, в любой растровой графической программе можно увеличить число точек картинки, однако при этом качество изображения непременно ухудшится, примерно так, как это происходит при сильном увеличении фотоснимка. Недорогие современные сканеры обеспечивают возможность ввода листа размером А4 с разрешением 1200 dpi. Понятно, что итоговый размер картинки получается несопоставимо большим, чем при использовании любых устройств видеоввода. Эти принципиальные отличия связаны с тем, что сканер может вводить изображение сколь угодно долго. Чем медленнее изображение обрабатывается, тем больше мелких деталей можно получить. Отсюда вывод – хороший сканер всегда работает медленно. Время же для ввода кадра ограничено (1/30 или 1/25 секунды в обычном видео и до 1–2 секунд в системах видеоконтроля). Дело в том, что увеличение продолжительности съемки (как и увеличение выдержки у фотоаппарата) требует неподвижности объекта съемки или предполагает потерю части информации. Возможность получить изображение быстро движущегося объекта и является основным преимуществом систем видеоввода. Существует еще одна возможность: захват кадра из изображения, принимаемого ТВ тюнером. Понятно, что в этом случае альтернативного способа получения цифровой копии не существует (если не рассматривать всерьез идею сделать фотоснимок с телеэкрана). Нецелесообразно применение захвата кадра и в таких ситуациях, когда картинку предстоит значительно увеличить, например, до размеров настенного календаря или крупноформатного плаката. В таком случае разумнее сделать хороший (желательно широкоформатный) слайд и отсканировать его с высоким разрешением на барабанном сканере или современном планшетном лазерном аппарате профессионального класса. Конечно, если вы хотите в качестве центрального персонажа вашего изображения использовать, например, балерину во время танца или летящую пчелу, возможно, видеоввод окажется предпочтительнее (хотя существуют моторизованные фотокамеры со «скорострельностью» 6 кадров в секунду). Тогда желательно так составить композицию, чтобы она включала не одно большое изображение, а несколько фрагментов меньшего размера. Это позволит увеличивать каждый из них не более чем на 40–50 %. И уж совсем не обойтись без захвата кадра в ситуациях, когда объект движется, и нам необходимо зафиксировать, обработать и продемонстрировать зрителю определенные фазы его перемещения (например, при медицинской видеосъемке пациентов с неврологическими заболеваниями или проблемами опорно-двигательного аппарата, в системах видеоконтроля, использующихся в охране, промышленном телевидении, различных испытательных лабораториях и центрах и т. п.) Решив использовать устройства захвата кадра, не стоит упускать из виду еще одну сторону проблемы: эти устройства не устраняют недостатки используемой видеокамеры, более того, некоторые алгоритмы оцифровки могут их даже усиливать. Разумеется, последующая обработка картинок в программах типа PhotoShop поможет ликвидировать некоторые из этих дефектов, но, к сожалению, часть информации в этом случае будет безвозвратно утеряна. Следует также иметь в виду, что даже идеально оцифрованное изображение придется обрабатывать (и отсканированное, и полученное из видео), если вы планируете использовать его для полиграфии. Так что работы хватит и без ретуши откровенно некачественных кадров. Конечно, дефекты может иметь и слайд, предназначенный для сканирования. Но найти квалифицированного фотографа с хорошей техникой все же значительно дешевле, чем обзаводиться видеокамерой профессионального класса. Если вы все же решились на видеосъемку, постарайтесь, даже при наличии более-менее дешевого устройства ввода, найти хорошую камеру и правильно установить свет (для правильной настройки камеры желательно попросить сделать первые кадры специалиста), иначе все ваши усилия могут оказаться напрасными. Несмотря на все вышесказанное, автор отнюдь не призывает отказаться от работы с компьютерным видео, а всего лишь указывает на те сложности, которые ждут вас в начале работы. Так, вряд ли стоит использовать компьютерное видео для получения цифровых изображений предметов сервировки праздничного стола, хотя автор в начале своей карьеры дизайнера поступила именно так. Там же, где захват кадра целесообразен и необходим, стоит заранее продумать все стороны процесса, чтобы потом не гадать, откуда же взялись дефекты и кто в них повинен – плата ввода, оператор или устаревшая камера. ТВ тюнеры Данная категория устройств ориентирована в основном на домашнее использование – что может быть приятнее, чем смотреть любимый сериал, не отрываясь от игры в Doom 2! Многие пользователи начали свое знакомство с видеовводом как раз с этого типа устройств. Чтобы начало знакомства не стало одновременно и его завершением, стоит обратить внимание на следующее обстоятельство: практически все устройства этого типа относятся к категории дешевой аппаратуры. Поэтому не стоит ожидать, что с помощью одного и того же блока вам удастся и посмотреть любимый телесериал, и увековечить его на своем жестком диске, чтобы, немного «поколдовав» над ним, заменить финал на более оптимистический (или наоборот – по В.В. Путину – всех «замочить в сортире»). Для решения подобной задачи вам придется установить дополнительно плату видеомонтажа, в несколько раз превосходящую по стоимости ваш ТВ тюнер (а возможно, и весь компьютер), обзавестись максимально быстрым жестким диском большой емкости и освоить какую-либо из программ видеомонтажа. Если вы решились на это, тогда следующий раздел написан именно для вас. Устройства линейного и нелинейного видеомонтажа Прежде всего давайте разберемся с тем, что же такое видеомонтаж. Само слово «монтаж» говорит о том, что происходит соединение, склеивание чего-то в единое целое. Это «что-то» – кадры и последовательности кадров, а склеиваются они в новый видеофильм. Чтобы заняться монтажом, надо иметь: а) исходную видеозапись (записи), б) видеомагнитофон, где она (они) будет воспроизводиться, в) дополнительный видеомагнитофон, на который будем записывать наш новый «шедевр» и г) некоторый аналог ножниц и клея – монтажную линейку, на которой мы разложим последовательность на кадры, отметим нужные и создадим переходы между ними. Это последовательный, или линейный монтаж. При таком способе оцифровки видеоклипа не происходит. При помощи компьютера создается только монтажный лист, кроме того, могут регистрироваться отдельные кадры и создаваться предназначенная для предварительного просмотра копия клипа с уменьшенным размером и пониженным качеством кадров. Линейный видеомонтаж осуществляется обычно при помощи внешних устройств (контроллеров), присоединяемых на последовательный и/или параллельный порт компьютера. К достоинствам этого метода можно отнести невысокую стоимость, отсутствие жестких требований к ресурсам компьютера, в частности, к скорости и емкости жесткого диска, и отсутствие проблем, связанных с несовершенством алгоритмов оцифровки. Однако недостатков у этого способа тоже хватает. Главный из них обусловлен последовательным способом записи мастер-ленты: в уже записанном материале практически ничего нельзя изменить. Кроме того, при многократной перезаписи с одного магнитофона на другой неизбежно ухудшение качества, к тому же для создания спецэффектов требуется отдельная, дорогостоящая аппаратура; нет возможности сохранять видео в цифровых форматах и записывать его на лазерные диски (CD или DVD), которые гораздо долговечнее магнитной ленты. Тем не менее устройства линейного монтажа находят себе применение при производстве недорогих роликов, не включающих спецэффекты, например при подготовке фильмов, содержащих учебную, научную или технологическую информацию. Строго говоря, линейный монтаж не является видеовводом как таковым. При нелинейном монтаже оцифровка исходной последовательности (последовательностей), которая хранится теперь на жестком диске, происходит сразу. Любой участок видеофильма доступен для работы практически мгновенно. Одно и то же устройство осуществляет запись последовательности кадров на жесткий диск, участвует в ее воспроизведении на экране компьютерного монитора и передает сигнал обратно на видеомагнитофон или видеомонитор (осуществляет видеовывод) в любом порядке. Монтаж осуществляется в программах типа Adobe Premiere или Ulead Media Studio. Достоинства и недостатки нелинейного монтажа очевидны. К числу первых относится возможность хранить информацию практически вечно, не опасаясь при этом ее повреждения. (Возможность потери цифрового видеофильма в результате сбоев на жестком диске мы рассматривать не будем. Тем, кому данная тема кажется актуальной, можно посоветовать обратиться к публикациям, посвященным сохранению и защите цифровой информации. Статьи по этому поводу регулярно появляются в компьютерной печати.) Другим немаловажным достоинством является возможность оперативно и быстро, что называется «на ходу», видоизменять фильм. Например, можно прямо в выставочном павильоне, ориентируясь на реакцию потенциальных клиентов, вставлять и убирать сцены, менять текст, эффекты и т. д. Настолько же ценна возможность ретуши и просто изменения отдельных кадров, а также внедрения фрагментов компьютерной анимации. Теперь добавим в бочку меда ложку дегтя. Все сказанное верно при одном не всегда выполнимом условии: качество оцифровки должно быть хорошим. Кое-как оцифрованное изображение – та самая осетрина второй свежести. В чем же здесь дело? Поскольку видеофильм – это не что иное, как последовательность отдельных кадров, трудности при его создании могут быть связаны с одной из двух проблем: а) с качеством кадра, б) с пропусками в последовательности кадров (что при просмотре приведет к скачкам изображения). Первая проблема характерна для любых устройств видеоввода, поскольку алгоритмы оцифровки и микросхемы, а следовательно, и качество исходного (несжатого – см. ниже) кадра практически одинаковы для плат захвата кадра, тюнеров и плат монтажа. Мы подробно рассмотрим эту проблему в разделе, посвященном алгоритмам оцифровки. Теперь о второй – основной для плат нелинейного монтажа проблеме. Для получения мало-мальски реалистичного движения требуется минимум 18–20 кадров/с, для видео принята скорость 25 или 30 кадров/с (различия связаны со стандартами – см. ниже). При размере кадра 576x768 пикселов, глубине цвета в 24 бита/пиксел (подробнее о представлении цвета мы поговорим далее) величина цифрового потока оказывается более 32,4 Мбайт/с. Такую постоянную скорость записи при непрерывной работе пока не может обеспечить даже самый быстрый жесткий диск. Для уменьшения скорости потока данных можно: а) уменьшить размер кадра, б) уменьшить глубину цвета, в) допустить потерю некоторых кадров, г) ввести компрессию изображения. Есть еще один вариант: запись можно вести на нескольких, особым образом синхронизированных жестких дисках. Первый вариант (а) пригоден лишь в ограниченных случаях, например, если видео будет передаваться по телефонным линиям или всегда будет воспроизводиться в окне небольшого размера. Так устроены, в частности, некоторые обучающие системы, игры, мультимедиа-альбомы. В остальных случаях идет битва за увеличение размера кадра, и намеренное его уменьшение ничего, кроме недоумения, вызвать не может. Ничем не лучше и второй вариант (б). Казалось бы, 16 миллионов оттенков, которые дает 24-битная палитра (2 ), – это очень много. Однако до сих пор нет однозначного мнения, какое максимальное число оттенков может различать человеческий глаз. Если принять на веру утверждение одного из корифеев компьютерной обработки изображений Дэна Маргулиса, нижний предел ухудшения изображения оценивается примерно в 100 градаций на каждый цвет. Дальше начинается заметное огрубление. То есть цвет, кодируемый 24 битами на пиксел (256, или 2 на канал), имеет не такой уж большой избыток информации. Существенное уменьшение числа оттенков заметно ухудшит изображение. На самом деле изображение часто передается не в RGB, а по стандарту YUV (подробнее о нем см. ниже), где передаются сигналы яркости и так называемые цветоразностные сигналы. За счет того, что для человеческого глаза яркость оказывается несравнимо более важным параметром, объем информации о цвете без потери качества по сравнению с яркостной составляющей можно снизить в 2 раза. При таком способе представления достаточно 16 бит на пиксел. Но скорость потока данных в «живом» видео все равно будет слишком велика: 21,6 Мбайт/с. Есть (и широко используются – об этом будет рассказано в следующих главах) способы сократить объем информации о цвете, правда, с некоторым ухудшением качества изображения. Малоэффективен и третий путь (в) решения проблемы. Если скорость записи будет ниже 24 кадров/с, персонажи будут «дергаться», как в чаплинских короткометражках. Поэтому остается единственный выход – найти способ динамического сжатия (компрессии) изображения, не влияющий заметно на его качество. Конечно, часть информации при этом будет утрачена (как, например, при сохранении неподвижной картинки в формате JPEG (Joint Photographic Experts Group – объединенная группа экспертов по фотографии), но при правильно подобранных параметрах зритель этого не заметит. Для компьютерного видео существуют два основных формата компрессии: Motion JPEG (стандарт JPEG для движения) и MPEG (Moving Picture Expert Group – экспертная группа по движущимся изображениям). В настоящее время создано немало устройств, осуществляющих аппаратную компрессию, то есть сжимающих кадр «собственными силами» спецпроцессора платы, не затрагивая при этом ресурсы центрального процессора и оперативную память компьютера. Эти платы создают кадр сразу в одном из форматов, использующих сжатие. На сегодняшний день данный способ наиболее популярен. Однако не расслабляйтесь: если вы решите извлечь из такого фильма отдельный кадр и использовать его для полиграфии (естественно, слегка увеличив) вас ждет неприятный сюрприз – его качество окажется неудовлетворительным. То, что прекрасно смотрится при быстрой смене кадров на экране, оказывается некачественным при представлении на бумаге. Отсюда вывод: прежде чем приобретать устройство, решите, потребуются ли вам отдельные кадры. Если нет – можно смело отдавать предпочтение устройствам с аппаратной компрессией. В противном случае – или смириться с невысокой скоростью записи, или периодически использовать плату нелинейного монтажа, отключая компрессию (если это возможно и речь действительно идет о некомпрессированном кадре, а не о последовательной компрессии-декомпрессии). Если такой возможности не предусмотрено, придется в дополнение к плате нелинейного монтажа обзавестись еще и устройством захвата кадра без компрессии. Нерассмотренным остался четвертый путь – использование распараллеливания на несколько накопителей. Для жестких дисков с интерфейсом типа SCSI (Small Computer Systems Interface – интерфейс малых компьютерных систем, произносится «скази») такая возможность давно существует. Это создание так называемых RAID-массивов (Redundant Arrays of Inexpensive Disks – избыточные массивы недорогих дисков), состоящих из нескольких одновременно доступных жестких дисков, на логическом уровне воспринимаемых как один. Эти диски дороги и используются скорее корпоративными, чем частными пользователями. В последнее время появились RAID-массивы на основе дисков с интерфейсом типа IDE (Integrated Drive Electronics – встроенный интерфейс накопителей), однако они еще не нашли широкого распространения. Мы расскажем об этих моделях в одной из следующих глав. Следует упомянуть, что некоторые профессиональные видеомонтажные системы обеспечивают возможность так называемого гибридного монтажа, при котором оцифрованные видеофрагменты, компьютерная анимация, титры, видеоэффекты и высококачественные (некомпрессированные) видеофрагменты, подаваемые (по запросу) с видеомагнитофонов, мирно «сосуществуют» в монтажном листе. Мастер-ленты, записанные на таких системах, имеют наилучшее качество изображения. Устройства внешние и внутренние – что выбрать Как уже отмечалось, в настоящее время практически все типы устройств видеоввода могут быть выполнены или в виде компьютерных плат, или как внешние устройства. И тот, и другой вариант исполнения имеют свои плюсы и минусы. Что же предпочесть? Внешние устройства Обычно внешние устройства (модемы, различные накопители и т. д.) значительно, порой в несколько раз, дороже своих внутренних аналогов. При этом далеко не всегда увеличение цены связано с таким же повышением качества. Конечно, внешние устройства лучше изолированы от помех, возникающих внутри компьютера. Например, корпус модуля линейного монтажа Miro Studio 400 имеет внутри специальный экранирующий слой из достаточно толстой металлической фольги, значительно уменьшающий электромагнитные помехи. Кроме того, внешние устройства менее привередливы по отношению к параметрам самого компьютера (точнее, его материнской платы и процессора). Например, серьезные (иногда непреодолимые) проблемы с внутренними устройствами возникают у обладателей материнских плат на основе процессоров Intel 80486. При работе с такими устройствами для захвата картинки обычно можно использовать обычный TWAIN-драйвер, так же, как при сканировании. С другой стороны, внешние устройства имеют слабое место – интерфейс передачи данных. Устройства, подключаемые к порту LPT Основные трудности для устройств, работающих на параллельном порту, связаны со скоростью передачи данных. Для некоторых внешних устройств, передающих небольшие потоки информации, например таких, как модемы, достаточно последовательного порта с его 115 Кбайт/с. Некоторые ТВ тюнеры, так же, как принтеры и сканеры, «живут» на параллельном порте. Но его скорость все равно недостаточна, по крайней мере, для «живого» полноэкранного видео. Кроме того, такой порт в компьютере обычно один (редко два или три). Можно установить разветвитель, но и эта мера не спасает ситуацию, поскольку таким способом вы не заставите одновременно работать два устройства, и уж тем более этот прием не увеличивает скорость передачи данных. Модели, работающие через параллельный порт, обычно передают либо отдельный кадр нормального размера (и тогда делают это достаточно эффективно), либо последовательность кадров уменьшенного размера или уже сжатых (и тогда качество этих кадров, сами понимаете, оставляет желать лучшего). К первому случаю можно отнести систему линейного монтажа Miro Studio 400 (ту самую, которая имеет внутри металлический экран) – устройство полупрофессионального класса, ко второму – различные ТВ тюнеры, вроде Life Video. Установку устройства на параллельный порт можно порекомендовать в тех случаях, когда не остается иного выбора. Это бывает, если у вас: • устаревшая материнская плата, на которой не удается смонтировать внутренние устройства; • компьютер типа «<ноутбук» и одновременное стремление сэкономить средства (сочетание почти фантастическое); • патологическое нежелание открывать системный блок, осложненное уже упоминавшейся жаждой экономии, или отсутствие на материнской плате интерфейса типа USB (об этом далее, а также в главе 3). USB-устройства В последние годы получила распространение шина USB – Universal Serial Bus (универсальная последовательная шина), которая, по замыслу разработчиков, должна была снять проблемы, связанные с подключением к системному блоку большого числа устройств с различной скоростью передачи данных (этой шине посвящен особый раздел в третьей главе). В первое время USB-устройства представлялись почти неработоспособными, затем полоса неудач была достаточно успешно преодолена, однако для полноценной передачи видеоданных средней скорости шины USB все же недостаточно. Поэтому внешние USB-тюнеры и устройства ввода при записи видеопоследовательности передают не полный кадр, а только его часть, например фрагмент размером 320x240 пикселов. Такие изображения можно использовать только для экранного просмотра. Даже если не касаться качества картинки, ее размер на печати, например, при 300 dpi будет меньше квадратного дюйма (320 / 300 = 1,06; при 240 / 300 = = 0,8 дюйма). В основном такие изображения используют в Internet, при видеопрезентациях или в домашних архивах. Для профессиональной и даже полупрофессиональной работы они совершенно непригодны. USB-устройства ненамного превосходят по качеству устройства, использующие LPT-порт, хотя и значительно отличаются ценами. Если вы собираетесь работать под Windows NT, учтите: в версии 4.0 младшие Service Pack (до четвертого включительно) поддержки USB не обеспечивают. Интерфейс FireWire В последнее время начинает активно использоваться интерфейс IEEE 1394, коммерческое название – FireWire (что можно примерно перевести как «огонь, бегущий по проводам»), существенно превосходящий по скорости передачи данных интерфейс USB. В частности, он используется для передачи информации от цифровых (некомпьютерных) устройств, например DV-магнитофонов (Digital Video – цифровое видео) и DV-камер на компьютер. Интерфейс FireWire мы подробно рассмотрим в третьей главе. Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/oksana-bukoveckaya/video-na-vashem-komputere-tv-tunery-zahvat-kadra-videomontazh-dvd/?lfrom=334617187) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
КУПИТЬ И СКАЧАТЬ ЗА: 119.00 руб.