Сетевая библиотекаСетевая библиотека
Системная технология Марат Махметович Телемтаев В монографии изложена новая научная методология – системная технология (системная философия деятельности), впервые предложенная автором в начале 70-х годов. Содержит формулировку и доказательство принципа системности и принципов технологизации, обоснование и формулировку Закона системности и Закона технологизации, модели систем, процессов. Сформирован прикладной метод системной технологии и изложены его применения в информатике, управлении, образовании, экологии, экономике, математике, в социальной политике, при построении крупномасштабных программ деятельности и т.д. Метод системной технологии позволяет создавать теории для разрешения научных проблем и конструктивные способы разрешения практических проблем для разных сфер деятельности. Системная технология М. Телемтаева, как показывает многолетний опыт, оказалась полезной педагогам, научным работникам, студентам и аспирантам, проектировщикам, практикам-менеджерам, специалистам в области образования, информатики, управления, бизнеса, экономики, экологии, банковского и страхового дела, кадровой политики, руководителям и участникам неправительственных организаций, государственным служащим и многим другим. Для корректного отображения математических операндов используйте шрифт с поддержкой Юникода (например, Arial Unicode MS) М. М. Телемтаев Системная технология (системная философия деятельности) Введение * В современной конкурентной среде профессионалам (ученым и педагогам, инженерам и техникам, врачам и экономистам, конструкторам и технологам, проектировщикам и рабочим, менеджерам и другим специалистам) нередко приходится менять сферы деятельности, т.е. сферы приложения своих знаний, умений и навыков. Для многих профессионалов становится естественным изменение сферы своей деятельности раз в 4–7 лет. Это происходит добровольно, с целью добиться лучших результатов работы, либо вынужденно. Часто специалист обнаруживает, что на новой работе не годятся его прежние знания, умения и навыки. В большинстве случаев проблема заключается в том, что он не знает, как приспособить то, что он знает и умеет, к новым обстоятельствам. Чтобы этого избежать, многие специалисты и студенты стремятся приобрести по две разные специальности, напр., «Прикладная математика» и «Экология», и таким образом они хотят научиться быстрее осваивать новую работу, если в будущем они столкнутся с такой ситуацией. * С одной стороны, в современном сложном мире необходим профессионал, как и прежде, как «узкий» специалист, владеющий комплексом эффективных методов разрешения проблем некоторой избранной им сферы деятельности (конструктор, программист, менеджер и т.д.). С другой стороны, в еще большей мере необходим современный профессионал-полигистор, «знаток во многих сферах деятельности», профессионал системного уровня. Это специалист, владеющий эффективной профессиональной методологией, позволяющей ее эффективно применять для разрешения проблем в разных «узких» сферах человеческой деятельности, образно говоря, «на разных работах». Связано это требование с тем известным обстоятельством, что на современном уровне практические задачи можно эффективно решать только при учете взаимозависимости и взаимосвязанности явлений природы и общества, их внутреннего единства. Для того, чтобы можно было целенаправленно готовить таких специалистов и повышать в этом направлении квалификацию работающих специалистов, необходимо, чтобы и наука создавала такого рода универсальные научные методологии, отражающие единство науки. Системная философия деятельности (системная технология) – одна из таких методологий, овладение которой позволяет стать профессионалом в системном понимании. Профессионал системного уровня создает на основе теоретической и прикладной системной технологии свой набор интеллектуальных «операций, действий, движений», свою оригинальную интеллектуальную системную технологию, которую он успешно применяет для практической и исследовательской деятельности в разных областях. Поэтому теоретическая часть системной технологии названа системной философией деятельности, так как она дает возможность профессионалу быстро осваивать новые сферы деятельности на основе единой методологии. Профессионала, который овладеет предлагаемой методологией – системной философией деятельности в виде системной технологии, можно называть системным технологом. Для системного технолога не страшна новая сфера деятельности. Он обладает тем, что можно назвать «системной интуицией», и легко приспосабливает свои знания к новой работе, создает необходимую систему знаний, умений и навыков. * До конца 18-го века технологией считалось учение об искусстве осуществления любой деятельности. С развитием промышленности этот термин стал употребляться преимущественно для обозначения искусства промышленного и энергетического производства. В последние десятилетия этот термин вновь широко применяется для описания деятельности во всех сферах человеческой деятельности (технологии обучения, информатики, управления, производства, оздоровления, политические технологии, социальные технологии, сельскохозяйственные технологии и т.д.). Но теперь общее понятие технологии обогащено опытом промышленной и энергетической технологий. Это понятие в наше время должно означать искусство осуществления такой совокупности действий, которая гарантированно приводит к получению полезного изделия, продукта с заданными свойствами (управленческое решение, программа для компьютера, знания и умения обученных специалистов и т.п.). Другими словами, это практическое искусство преобразования ресурсов в полезный результат с заданной формой, свойствами и состоянием при помощи машины («техническая машина» – станок, компьютер, «природная машина» – земля, растение, животное) и человека путем создания определенным образом организованных человеко-машинных технологических систем. Технологические системы должны позволять в практике деятельности многократно повторять процесс создания однотипного результата (изделия, продукта) с заданными свойствами. * Как правило, технологические системы являются сложными, большими, крупномасштабными системами. Для изучения сложных и крупномасштабных объектов используется системный подход, который рассматривает объекты исследования, как системы. Системный подход использует современные математические методы исследования и позволяет изучать ключевые особенности структур и процессов в объектах исследования. Системный подход используется, как правило, для исследовательских целей в управлении, экологии, образовании и в других видах деятельности. Системный подход является преимущественно творческим исследовательским процессом, который позволяет выделить, изучить и использовать системность изучаемых объектов. Но, в отличие от технологии, системология и системный подход зачастую далеки от практики деятельности и практической реализации идей. * Автором объединены возможности технологии и системного подхода и создана системная технология (ее теоретическая часть названа системной философией деятельности), конечной целью которой является построение технологий в виде систем для разных видов человеческой деятельности. Концепция системной философии деятельности сжато может быть изложена в следующей форме: для осуществления любого вида деятельности должны быть построены системные технологии, т.е. технологии системной деятельности, реализованные в виде целенаправленных систем. * Другими словами, системная философия деятельности дает возможность соединить учение об искусстве деятельности (технологию в широком смысле) с искусством системности. Системная философия деятельности позволяет на новом качественном уровне объединить возможности прикладной и, во многом, эмпирической науки – технологии с возможностями теоретического аппарата системного подхода. Применения системной философии деятельности обширны: от крупномасштабных глобальных и национальных программ и программ общественно-политической деятельности – до технологий разных видов производства, технологий индивидуального обучения, технологий управления технологическими процессами, предприятиями и фирмами, организациями, а также технологий решения математических и других задач. Первый класс задач системной философии деятельности – найти такие общие закономерности построения систем, их процессов и структур, которые можно использовать для построения любых технологий деятельности. Второй класс задач – сформулировать общие закономерности осуществления технологий, пригодные для построения систем в любой сфере деятельности. Третий класс задач – построить прикладной метод для построения систем, процессов, структур системной технологии в различных сферах деятельности. * В монографии впервые дано полное современное изложение новой научной методологии – системной философии деятельности и описаны результаты ее применения для построения теорий и для практического построения системных технологий. До этого разделы системной технологии по мере их разработки и апробирования были опубликованы в ряде работ автора [28–58]. Первый раздел содержит формулировку и доказательство принципа системности, обоснование и формулировку Закона системности, модель целенаправленного системного процесса, описание моделей систем и классификацию систем, универсальную математическую модель общей системы, а также обобщенную модель переработки ресурсов в системе (главы 1,3). Второй раздел содержит классификацию технологий целенаправленного преобразования всех видов ресурсов, описание особенностей моделирования человеческих, информационных, природных и др. видов ресурсов, обоснование и формулировку Закона технологизации, краткое описание особенностей современных технологий, обоснование и формулировку основных принципов построения и осуществления системных технологий, принципы построения и управления проектами технологических систем (главы 1,2). Третий раздел содержит метод системной технологии и его приложения для целенаправленного преобразования материальных, информационных, человеческих, природных, энергетических и других ресурсов в информатике, управлении, образовании, экологии, экономике, математике, при построении крупномасштабных программ деятельности и т.д. В связи с невозможностью описания всех имеющихся приложений системной технологии в одной работе, здесь приведен комплекс, наиболее выпукло характеризующий ее возможности в социальной, экономической и экологической практике (главы 4–12). При изложении этих разделов опущен ряд технических подробностей построения системных технологий и не приведены многие прикладные и практические результаты, так как это не входило в задачу настоящей работы; эти сведения читатель может восполнить, либо самостоятельно прилагая усилия по углубленному освоению материала глав 1–4, либо используя курсы лекций, консультации и практические пособия автора по системной технологии. * Системная технология, как показывает многолетний опыт, оказалась полезной педагогам, научным работникам, проектировщикам, практикам-менеджерам, специалистам в области образования, информатики, управления, промышленных технологий, оценки, функционально-стоимостного анализа, логистики, банковского и страхового дела, кадровой политики, студентам и аспирантам, руководителям и участникам неправительственных организаций и многим другим. Метод системной технологии позволяет создавать теории для разрешения научных проблем и конструктивные способы разрешения практических проблем. Все те, кто освоил метод системной технологии, сумели значительно повысить полезность, а следовательно, и доходность своей деятельности. * Надеюсь, что это издание расширит круг полезных приложений системной технологии, как системной философии деятельности современного профессионала. Считаю приятным долгом сообщить о своей глубокой признательности акад. В.И. Чернецкому и акад. А.А. Денисову, оказавшим существенную поддержку моей работе. Книга построена таким образом, что после прочтения введения можно сразу приступать к интересующему читателя разделу в части 2 «Прикладная системная технология», (главы 5–12), а затем, по мере необходимости, обращаться к теоретическим разделам части 1 (главы 1–4) «Теоретические основы системной технологии (системная философия деятельности»). Глава 4 написана совместно с А. Телемтаевым и Г. Телемтаевой, глава 5 – совместно с А. Телемтаевым. * Изучение и применение системной философии деятельности дает возможность профессионалу конструировать оригинальные системные технологии для любого вида деятельности, т.е. процессы достижения цели, невыполнимые «за один раз», превращать в систему «просто выполнимых» практических операций и действий поэтапного достижения цели деятельности. Системный технолог обладает, как профессионал, «системной интуицией» и своей оригинальной системной технологией работы. Часть I. Системная философия деятельности (теоретические основы системной технологии) Глава 1. Основные положения 1.1. Концепция В настоящем разделе излагается концепция системной технологии, как система определений и взглядов на ее построение. * Следующие определения примем за основу: Система — это способ организации методов и средств достижения цели, решения задач, разрешения проблем. Технология — это способ организации методов и средств изготовления изделия. Системная технология — это объединение способов организации методов и средств, присущих системам и технологиям, для достижения цели, решения задач, разрешения проблем путем изготовления изделия. Такое объединение продуктивно по следующим причинам. С одной стороны, технологии реализуются в системах, напр., в технологических системах промышленного производства, обучения, научного эксперимента и в др., однако при их создании недостаточно реализуются принцип системности, методы моделирования систем и другие достижения в области построения систем. Но технологии и теории, на основе которых они создаются, обладают несомненным преимуществом перед всеми видами деятельности – они эффективно реализуются на практике. С другой стороны, в создаваемых человеком системах образования, управления и др. осуществляются процессы и структуры, которые по уровню своей организации и эффективности во многом уступают технологиям, напр., промышленного и энергетического производства. Но теории, посвященные исследованию феномена системности, обладают, в свою очередь, большим преимуществом перед многими другими теориями – они эффективно исследуют процессы и структуры объектов исследования, как систем. * Системная технология использует и объединяет преимущества обоих подходов, реализует преимущества системности и технологии во взаимосвязи. В теории системной технологии изучение систем и понятий системности осуществляется с учетом атрибутов технологий (напр., таких, как целенаправленность, технологический регламент, результативность, изделие и др.). Такой подход приводит к построению технологий осуществления системности человеческой деятельности. С другой стороны технологии изучаются, как процессы, протекающие в системах, обладающих признаками больших, сложных, крупномасштабных систем. Такой подход приводит к выполнению условий системности при построении технологий. В свою очередь, взаимосвязанное построение технологий осуществления системности и системности построения технологий позволяет создать методологию системных видов деятельности (системная экология, системная оценка, системное управление, системное проектирование и т.д.). * Основная проблема, разрешением которой занимается системная технология, как наука, может быть описана следующим образом: создать методологию построения такой системной деятельности, высокая эффективность которой обеспечивается за счет сочетания современного уровня технологий деятельности с системностью моделей деятельности. Системную деятельность в смысле системной технологии можно называть системнотехнологической деятельностью (СТ-деятельностью). Для краткости и удобства изложения, в тех случаях, когда это не вызывает разночтений, можно пользоваться терминами «системная деятельность» или «СТ-деятельность». Методологию построения СТ-деятельности назовем системной философией деятельности, методологией системной технологии или СТ-методологией. Проблема СТ-методологии, разрешается, в частности, и с помощью тех результатов, которые получены при разрешении уже упоминавшихся двух подпроблем системной технологии: проблемы технологий осуществления системности и проблемы системности построения технологий. * Практическое применение методов СТ-методологии в информационном, управленческом, материальном, энергетическом и других видах производства, а также в управлении развитием человеческого, природного и других видов ресурсов преобразует любую деятельность в системную деятельность верхнего уровня – в СТ-деятельность, если в этой сфере деятельности имеется соответствующего уровня методическая и практическая готовность к реализации системной деятельности в смысле СТ-методологии. Методическая и практическая готовность конкретного вида деятельности к внедрению СТ-методологии обеспечивается созданием системной деятельности и технологической деятельности в этой сфере (напр., системного обучения и технологий обучения, системного управления и технологий управления, системной оценки и технологий оценки). Основой для этих преобразований являются результаты разрешения упоминавшихся проблемы технологий осуществления системности и проблемы системности построения технологий. Практическая цель СТ-методологии – превращение конкретных видов целенаправленной человеческой деятельности любой сложности в такие системные комплексы процедур, которые, на протяжении заданного обозримого периода времени и с заданной эффективностью, могут реально выполняться человеческими коллективами средней квалификации и/или машинными и человеко-машинными комплексами средней сложности. СТ-методология необходима для системной индустриализации подсистем общественного производства. * Проблемы, решаемые СТ-методологией, можно представить тремя классами задач: системные, технологические, прикладные. Системные задачи – найти такие общие закономерности построения систем, их процессов и структур, которые можно использовать для построения технологических систем при реализации различных видов человеческой деятельности. Технологические задачи – сформировать общие закономерности построения технологий, пригодные для технологизации системной человеческой деятельности при целенаправленном преобразовании различных видов ресурсов. Прикладные задачи – построить и реализовать метод системной технологии для создания и осуществления системных технологий в любой деятельности человека. * Системные исследования деятельности (первый класс задач системной философии деятельности) имеют следующие цели: конкретизация содержания и моделей системной технологии, формулирование и доказательство принципа системности, обоснование существования и формулировка Закона системности, математическое моделирование общих систем и изделий, а также структур и процессов целенаправленной деятельности. * Разработка методов решения второго класса задач системной философии деятельности имеет целью: обосновать существование и сформулировать Закон технологизации, найти и описать принципы осуществления и развития технологических процессов, характерные черты и свойства, «эталонные» характеристики технологических систем, процессов, структур и их изделий, а также создать процедуры определения качественных и количественных оценок соответствия системы «эталону» технологической системы. * Третий класс задач системной философии деятельности направлен на создание общего метода преобразования любого вида человеческой деятельности в системную. Метод системной технологии представляет собой «прикладное искусство СТ-методологии» при проектировании и реализации любой целенаправленной деятельности. * Системная технология является основой для практики системной индустриализации общественного производства. Системная индустриализация – это создание человеко-машинных производств, которым присуща системность построения и высокий технологический уровень. Системная индустрия – необходимый компонент системной деятельности для любой сферы общественного развития. Такие производства нужны для осуществления любой системной деятельности – промышленной, образовательной, научной, управленческой, проектной и т.д. Системная индустриализация стала принципиально осуществимой с появлением возможностей массового применения вычислительных машин и оргтехники для переработки информации в любой сфере человеческой деятельности. Системная технология использует опыт промышленных и энергетических производств, которые основаны на классических принципах непрерывности, параллельности, пропорциональности, ритмичности, а также специализации, комбинирования, кооперирования, концентрации производства и др. Но при этом системная технология позволяет избегать ошибок промышленной и энергетической индустриализации, приведших к крупномасштабным и трудноразрешимым экологическим проблемам. В процессе системной индустриализации определенного вида человеческой деятельности можно выделить три составные части создания системного человеко-машинного производства: а) системная машинизация — создание и использование специализированных систем машин; б) системная технологизация — создание и реализация человеко-машинных системных технологий и, на их основе, технологических систем; в) системная координация — создание и реализация производственной системы, как совокупности технологических и экономико-административных систем. * Системная машинизация предполагает, что машины для определенного вида человеческой деятельности или для преобразования определенного вида ресурса должны создаваться как системы, комплексы машин. К машинам предъявляется комплекс, система требований и для их выработки необходим анализ процессов переработки ресурсов, характерных для данного вида человеческой деятельности. Такой анализ проводится на основе комплекса моделей рассматриваемой деятельности, напр., образовательной, как моделей больших систем. В общем случае, системная технология машинизации определенного вида человеческой деятельности основывается на применении системных моделей трех объектов: системы процессов, системы требований к машинам, системы машин. В совокупности эти модели образуют некоторую триаду моделей «процессы-требования-машины», позволяющих отслеживать и координировать процессы создания, использования и замены парка машин фирмы, организации или соответствующей отрасли общественного производства в целом. Системная технология создания и внедрения систем машин в информатике, образовании, коммуникациях, управлении, производстве и в других сферах основана на Законе и принципе системности, моделях общих систем и целенаправленных процессов деятельности. * Системная технологизацияобъединяет человека и машину, приводя к созданию технологических человеко-машинных систем и их комплексов для преобразования не только материальных, но и человеческих, природных, информационных и др. видов ресурсов. Системная технологизация основана на методе системной технологии, использующем эффект совместного действия Законов системности и технологизации, принципов системности и технологизации, моделей систем и технологий. Как известно, процессы творчества массово невыполнимы в том смысле, что они не могут многократно выполняться для тиражирования одного и того же изделия. В отличие от них, технологии – это процессы, которые создаются, по замыслу конструктора и технолога, как многократно выполнимые совокупности простых операций изготовления одинаковых изделий. Простота операции в данной технологии для человека обеспечивается, в частности, тем, что сложные и громоздкие физические, механические, химические, информационные, управленческие и другие процессы «поручаются» машине. Системная технология рассматривает вопросы технологизации на новом системном уровне, что дает возможность построения более совершенных технологий – системных технологий, и превращения данного вида деятельности в системную деятельность: системная экология, системное образование и т.д. * Системная координация осуществляется на основе метода системной технологии и комплекса прикладных системных технологий, которые разработаны в соответствующих разделах, посвященных приложениям системной технологии в информатике, управлении, образовании, математике, экологии, в социальных технологиях и в экономике. * Системная технология включает в себя, как один из разделов, формальное определение и исследование изделия (продукта) технологической системы, как результата функционирования технологической системы материального, информационного и др. видов производства. Очевидно, что изделие, во-первых, должно иметь самостоятельное назначение для использования вне данного производства, во-вторых, нести информацию о качестве системы, в которой оно создано. Кроме того, совокупность изделий технологической системы содержит «полезный» результат, используемый в сфере производства и потребления при осуществлении различных видов человеческой деятельности, и «бесполезный» – отходы, потребляемые, напр., природной средой. Системная технология изучает свойства изделия, общие для всех технологических систем, независимо от вида преобразуемого ресурса и рода человеческой деятельности. В качестве изделия технологической системы рассматриваются предметы потребления, средства производства и «отходы». Во всех случаях изделие является средством взаимодействия технологической системы с внешней средой и либо необходимо и полезно внешней среде для достижения своих целей, либо оно бесполезно, либо оно наносит вред внешней среде. В результате решения этих задач системная технология содержит не только теорию, но и практические методы построения системных технологий, как систем выполнимых операций для реального осуществления целенаправленных процессов деятельности. Сформулированная в настоящем разделе система определений и взглядов на взаимосвязанное построение систем и технологий впервые позволяет подойти с единых позиций концепции системной технологии к созданию общего метода построения технологий и обеспечения системности для любых видов человеческой деятельности. 1.2. Закон и принцип системности * Системное исходное положение системной технологии можно изложить в следующем виде: при использовании системной технологии для осуществления деятельности объекты этой деятельности описываются с помощью моделей общих систем. Сформулируем аксиомы системности в следующем виде. Аксиома 1. Для создания и осуществления системной деятельности объект этой деятельности необходимо представлять моделью общей системы. * Общая система может иметь множество моделей. Объект системной деятельности будет представляться для конкретного вида системной деятельности в виде модели, которая наилучшим образом соответствует той цели, для достижения которой создается данная системная деятельность. С другой стороны, модель объекта системной деятельности должна, видимо, быть построена в рамках тех моделей, которые используются в теории общих систем. Такие модели принято называть общими моделями систем, моделями общих систем, – это модели общие, которые можно использовать для описания создаваемых и реализуемых систем. Общие модели систем (модели общих систем) в совокупности обеспечивают основу для единообразного обобщенного описания всех исследуемых систем. В зависимости от задач и содержания системной деятельности в качестве таких моделей могут использоваться модели дифференциальные, иерархические, алгебраические, имитационные и др. Выбор модели общей системы должен обеспечить единый язык представления создаваемых и реализуемых систем, их процессов, структур для данного вида системной деятельности. Общая модель системы, универсальная для задач системной технологии, описана в разделе 3.2. Все остальные модели системы, используемые в данной работе, отражают отдельные аспекты системности. В дальнейшем будем употреблять термины «системное образование», «системное проектирование», «системное программирование» и т.д. При этом будем считать, что, напр., системное образование (или системное программирование) отличается от образования (или программирования) тем, что для анализа, построения и осуществления системного образования (или системного программирования) использована системная технология. Описание объекта системной деятельности некоторой моделью общей системы означает, по сути, установление формальных «рамок», в которых может создаваться конкретная модель объекта. В качестве таких «рамочных» моделей общих систем могут быть выбраны, в зависимости от целей исследования, модели математические (алгебраическая или временная, иерархическая, агрегативная, технологическая и др.), вербальные (в виде комплекса принципов построения систем, процессов, структур, напр.), натурные, графические и т.д. Особенности моделирования систем рассматриваются в главе 3. Для целей системной технологии целесообразно использовать алгебраическую модель системы, предложенную автором в разделе 3.2, комплекс принципов построения технологий (раздел 2.2), модель целенаправленного процесса (раздел 1.4). На содержательную сторону модели общей системы для конкретной цели системной технологии оказывает влияние среда деятельности и те ее аспекты, которые мы изучаем в целях осуществления конкретной системной деятельности. Поэтому общая система может быть экосистемой, социальной системой, производственной, природной или другой системой. * Реализация системной деятельности должна производиться в интересах внешней среды. Для обеспечения интересов среды необходим субъект деятельности. Субъект деятельности исследует, создает, управляет объектом деятельности в интересах среды (общества, напр.). Можно очевидным образом сформулировать следующую аксиому системности: Аксиома 2. Для реализации деятельности необходим субъект деятельности. * Очевидно, что системная деятельность осуществляется в процессе взаимодействия субъекта и объекта деятельности (рис. 1.1). Потерь информации при восприятии информации от субъекта объектом деятельности, и при восприятии информации субъектом от объекта деятельности можно избежать, если для каждого элемента в субъекте деятельности, являющегося источником информации, будет иметься хотя бы один элемент в объекте деятельности, потребляющий информацию от источника. И, наоборот, для каждого элемента в объекте деятельности, являющегося источником информации, будет иметься хотя бы один элемент в субъекте деятельности – потребитель этой информации. Для этого необходимо, чтобы каждый элемент модели субъекта деятельности имел хотя бы один образ в модели объекта деятельности и наоборот, чтобы каждый элемент модели объекта деятельности имел хотя бы один образ в модели субъекта деятельности. Рис. 1.1. Взаимодействие субъекта и объекта деятельности Такое взаимное отображение множеств элементов объекта и субъекта деятельности, в частности, обеспечивается, если их модели построены на основе одной модели общей системы. Обеспечение такого отображения затруднится, если, напр., для моделирования объекта деятельности использовать иерархическую модель общей системы, а для субъекта деятельности – агрегативную. В этом случае необходимо обе модели – иерархическую и агрегативную, описать с единых позиций, что опять же приводит, в конечном счете, к необходимости одной модели общей системы для описания объекта и субъекта деятельности. На основе изложенного можно считать обоснованными следующие аксиомы системности. Аксиома 3. Субъект системной деятельности необходимо представлять моделью общей системы. Аксиома 4. Объект и субъект системной деятельности необходимо представлять одной моделью общей системы. * Справедливость этих утверждений можно подтвердить множеством практических примеров человеческой деятельности. Рассмотрим, для примера, технологии проектирования сложных и больших информационных систем – ИС (объекты проектирования). Для создания таких систем могут создаваться сложные системы автоматизированного проектирования – САПР ИС (субъекты проектирования). При этом необходимо модели субъекта и объекта деятельности создавать, используя одну модель общей системы. Тогда каждая часть ИС будет разрабатываться конкретной частью САПР ИС, и каждая часть САПР ИС будет иметь конкретный объект проектирования. Это не исключает такой возможности, когда несколько частей ИС разрабатываются одной частью САПР ИС и, наоборот, когда несколько частей САПР ИС заняты разработкой одной части ИС. Существует и определенная иерархия моделей. Так, сама САПР ИС также является объектом деятельности для некоторой системы управления проектированием и с этих позиций тоже должна представляться в виде некоторой другой модели общей системы. * Для получения принципа и Закона системности можно обосновать следующие утверждения в виде аксиом. Допустим, что существует некоторое множество М всевозможных элементов, из которых создаются искусственные системы, рассматриваемые здесь, как множества взаимодействующих элементов из М. Пусть В (М) – множество упорядоченных подмножеств с повторениями этого множества. Тогда множество всех систем В (S) взаимно однозначно соответствует В (М). М можно рассматривать, как некоторую универсальную среду, в которой создаются и функционируют системы. Среда М содержит людей, коллективы из людей, преследующие определенные цели, природные, энергетические, информационные и другие ресурсы и изделия из них. В среде М постоянно возникают, удовлетворяются и отмирают различные проблемы, намерения и цели. Для разрешения проблем, реализации намерений и для достижения целей нужны определенные изделия, продукты. Эти изделия и продукты – результат деятельности информационных, энергетических, промышленных и других систем. Так, для целей утоления физического голода нужна пища – изделие промышленных, сельскохозяйственных или природных систем, для целей утоления информационного голода нужна информация в виде изделий (продуктов) систем образования, средств массовой информации. Можно сформулировать следующее утверждение. Аксиома 5. Для достижения цели деятельности необходим результат деятельности. С позиций системы-объекта деятельности система-результат является объектом деятельности по воздействию на окружающую среду, с позиций некоторой части внешней среды, инициирующей создание этого изделия, система-результат является объектом ее деятельности по воздействию на какую-то другую часть внешней среды. Поэтому к системе-результату применимо то же требование, как и к системе-объекту, а к совокупности «система-объект и система-результат» применимы те же требования, что и к совокупности «система-субъект и система-объект». Таким образом можно сформулировать следующие утверждения. Аксиома 6. Результат системной деятельности необходимо представлять моделью общей системы. Аксиома 7. Объект и результат системной деятельности необходимо представлять одной моделью общей системы. * Итак, в общем, случае, в соответствии с некоторой целью F (или системой ценностей или системой целей разрешения определенной проблемы) среда М выделяет некоторый объект для изготовления изделия (продукта), т.е. результат деятельности объекта, обеспечивающий достижение цели. Для формирования, управления функционированием и для управления развитием объекта среда выделяет некоторый субъект деятельности, ответственный за соответствие функционирования объекта и за соответствие результата поставленной цели. Среда, теперь уже внешняя по отношению к триаде «объект-субъект-результат», представляет себе эту триаду на основе одной модели общей системы по той причине, что, в конечном счете, у всех трех компонент триады имеется общий системообразующий фактор – некоторая цель, в соответствии с которой среда М вычленяет эту триаду. Эту триаду, если она осуществляет системную деятельность, можно назвать системной триадой, триадой систем, так как в этом случае и объект, и субъект, и результат должны быть представлены моделями систем. Вначале среда М выступает в виде субъекта деятельности, поэтому сама среда, а также объект и результат будут описываться на основе некоторой модели общей системы. Затем система-субъект становится «представителем» внешней среды и, далее, возникает необходимость в общей модели триады «объект-субъект-результат» (рис. 1.2). Рис. 1.2. Системная триада Можно, для иллюстрации, привести следующий пример. Множество М – это множество человеко-машинных, машинных, человеческих элементов народного хозяйства. Одна из целей F, для достижения которых создаются системы, – это, например, удовлетворение потребностей в производстве измерений определенных параметров технологических процессов. Цель эта реализуется некоторой системой измерительных средств (система-результат), для производства которой создается производственная система-объект. Создание, управление и развитие производственной системы осуществляется системой-субъектом, выделяемой из среды М, напр., системой проектирования, строительства, управления системой-объектом. Изложенное доказывает следующий результат. Теорема 1. Объект, субъект и результат системной деятельности необходимо представлять одной моделью общей системы. В совокупности этот результат и аксиомы системности 1,2,3,4,5,6,7 составляют впервые сформулированный в таком виде Принцип системности: для создания и осуществления системной деятельности объект этой деятельности необходимо представлять моделью общей системы; для реализации деятельности необходим субъект деятельности; субъект системной деятельности необходимо представлять моделью общей системы; объект и субъект системной деятельности необходимо представлять одной моделью общей системы; для достижения цели деятельности необходим результат деятельности; результат системной деятельности необходимо представлять моделью общей системы; объект и результат системной деятельности необходимо представлять одной моделью общей системы; объект, субъект и результат системной деятельности необходимо представлять одной моделью общей системы. На основе общегопринципасистемностиможносформулироватьпринципсистемной технологии деятельности: для создания и реализации системной технологии деятельности систему-объект деятельности необходимо представлять общей моделью технологической системы; для реализации системной технологии деятельности необходима система-субъект деятельности; систему-субъект системной технологии деятельности необходимо представлять общей моделью технологической системы; систему-объект и систему-субъект системной технологии деятельности необходимо представлять одной общей моделью технологической системы; для реализации системной технологии деятельности необходима система-результат деятельности; систему-результат системной технологии деятельности необходимо представлять общей моделью технологической системы; систему-объект и систему-результат системной технологии деятельности необходимо представлять одной общей моделью технологической системы; систему-объект, систему-субъект и систему результат системной технологии деятельности необходимо представлять одной общей моделью технологической системы. * Принцип системности отражает те черты объективной действительности, которые необходимо учитывать при осуществлении любой деятельности, приводя ее, по возможности, к системной технологии деятельности. Так, в частном случае, описание триады «объект, субъект, результат» одной моделью общей системы проводится при математическом моделировании систем автоматического регулирования с обратной связью (САР), например, температуры в каких-либо технологиях. Модель температуры – модель результата деятельности САР, описывает температуру, как функцию времени. При этом модель объекта регулирования – функция, устанавливающая правила его регулирования; модель субъекта регулирования – модель регулятора, определяет «закон регулирования». Таким образом, общая модель триады дает описание взаимодействия объекта, субъекта и результата регулирования в форме обыкновенного дифференциального уравнения. Вынужденное движение человека в направлении системной деятельности наблюдается во всех сферах жизнедеятельности человека. Представим себя в роли гипотетического наблюдателя, который имеет возможность оценить это вынужденное движение к системности деятельности «со стороны». Такой гипотетический наблюдатель может установить, что человеческая деятельность должна соответствовать некоторой объективно существующей природной закономерности. Эта природная закономерность стимулирования человеческой деятельности со стороны объективной действительности, а также и реакции со стороны объективной действительности на человеческую деятельность частично заключается, видимо, в том, что это воздействие и эта реакция осуществляются некоторыми объективно существующими системами. Можно предположить, что объективная действительность организована в виде систем, имеющих происхождение либо природное, естественное (без вмешательства человека) либо искусственное (под влиянием человека), либо смешанное. Вполне обоснованно можно заключить, что в объективной действительности действует, наряду с другими законами, некий Закон системности. * Закон системности на основе предыдущих результатов впервые можно сформулировать в следующем виде: 1. Триада «объект, субъект, результат» любой человеческой деятельности всегда реализуется в рамках объективно существующих систем. Каждая из этих объективно существующих систем может иметь некоторое доступное человеку множество моделей. Для триады «объект, субъект, результат» одна из этих моделей является общей моделью системы, необходимой для реализации определенного этапа данной деятельности в виде системной деятельности. 2. Каждая из составляющих триады – объект, субъект или результат, реализуется в рамках объективно существующих систем. Каждая из этих объективно существующих систем может иметь некоторое доступное человеку множество моделей. Для каждой составляющей триады – объекта, субъекта или результата одна из этих моделей является общей моделью системы, необходимой для реализации определенного этапа данной деятельности в виде системной деятельности. 3. Внешняя среда триады, а также внешняя среда и внутренняя среда объекта, субъекта и результата оказывают влияние на создание, реализацию и развитие деятельности человека через указанные объективно существующие системы. Внутренняя среда элементов объекта, субъекта и результата и внешняя среда объекта, субъекта и результата взаимодействуют между собой. Эти факторы необходимо учитывать при создании, реализации и развитии системной деятельности; другими словами, необходимо учитывать, что любая система (в т.ч. система-объект, система-субъект и система-результат) не является своего рода оболочкой, внутри которой – внутренняя среда, а вне которой внешняя среда. 4. Объективно существующие системы, «внутри» которых осуществляется системная деятельность, а также системная триада и каждая из ее систем могут находиться на разных стадиях своих жизненных циклов – от замысла до старения и вывода из эксплуатации, независимо от стадии осуществления системной деятельности. 5. Каждая система (объект, субъект, результат, триада систем, элемент системы и т.д.) преследует «эгоистические» цели собственного выживания, сохранения, развития. * Общая модель системы строится с учетом существенных для данной деятельности особенностей осуществления процессов и построения структур систем. Общей моделью может быть, в зависимости от целей описания, модель экосистемы, модель удовлетворения спроса, модель социальной системы и т.д. В свою очередь, эта общая система может участвовать в виде одной из систем – объекта, субъекта или результата в реализации другой целеустремленной деятельности некоторой макросистемы, либо метасистема входит в состав какой-либо природной системы, либо эта метасистема является общей системой для других видов деятельности(одно другого не исключает). Метасистема может находиться на разных стадиях своего жизненного цикла – от замысла до старения и выхода из строя. Взаимодействие триады систем со своей метасистемой может строиться в широком спектре действий – от полного восприятия модели метасистемы для построения каждой из систем до построения метасистемы по «образцу и подобию» одной из систем триады. Для каждой триады систем может иметь место несколько разных метасистем. Взаимодействие отягощается тем, что триада систем не всегда имеет необходимую информацию о метасистемах и о моделях метасистем, в которых она участвует. В свою очередь, общая система может не иметь достаточной информации о строении и функционировании систем данной триады и о макросистеме. Внутренняя среда элементов каждой системы взаимодействует с теми метасистемами и макросистемами, «внутри которых» функционирует система. Например, машины и аппараты подвергаются атмосферным влияниям, люди, как элементы систем, подвергаются также и влияниям внешней социальной среды. Другими словами, внешняя среда системы и внутренняя среда элементов системы постоянно взаимодействуют между собой. Система, как уже отмечалось, не представляет собой некоторую оболочку, вне которой – внешняя среда, а внутри которой – внутренняя среда. Более подробно эти вопросы будут рассматриваться при построении моделей систем. * Полученные в настоящем разделе системной технологии результаты впервые позволяют подойти с единых позиций сформулированных здесь Закона и принципа системности к моделированию, проектированию и реализации системной деятельности любого уровня и масштаба. Полученные результаты не накладывают никаких ограничений на масштаб системной деятельности; они могут применяться для построения системной деятельности глобального, т.е. Планетарного масштаба, для деятельности в масштабах регионов Планеты, стран, регионов стран. Впервые сформулированные автором принцип и Закон системности можно эффективно использовать для построения системной деятельности по сохранению и развитию информационного, человеческого и других видов потенциалов, для различных предприятий и организаций, фирм и для деятельности отдельных людей. Универсализм полученных условий, определений и утверждений позволяет применять их для единообразного подхода при построении системных технологий деятельности сложных и крупномасштабных систем на всех их уровнях – от верхнего до нижнего. 1.3. Закон технологизации * Известны следующие определения [2]: «Технология, греч. – художествословие или описание работ, приемов и составлений всякого рода художественных, ремесленных и хозяйственных изделий, орудий и произведений. Из сего явствует, что слово сие есть почти равномысленное слову энциклопедия, или кругу наук; выключая те, что в технологию не входят, кроме побочным образом, умозрительные науки; но сии, исключая нравственность, богословие и словесность, не могут быть в пользу употреблены и изъяснены без какого-нибудь ручного художества. Следовательно, технология заключает в себе почти все то, что люди знают и делают. (Новый словотолкователь. Сост. Н.М. Яновский. СПБ, 1806 г.)». «Технология – наука о художественных, ремесленных и хозяйственных изделиях и орудиях; разделяется на механическую и химическую. Первая занимается обработкою сырых материалов в ремесленной форме; вторая – подвергает материалы химическим изменениям. Для первой нужно знать механику и действие машин; для второй – химию и естественные науки. (Русский энциклопедический словарь, издаваемый проф. С.-Петербургского университета И.Н Березиным. СПБ, 1877 г.)». «Технология (от греч. techne – искусство, мастерство, умение и logos – слово, учение) – совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, применяемых в процессе производства, для получения готовой продукции; наука о способах воздействия на сырье, материалы или полуфабрикаты соответствующими орудиями производства. Разработка технологии осуществляется по отраслям производства (Политехнический словарь, 2-е изд. М., «Советская энциклопедия», 1980 г.)». В современном представлении вновь технология «заключает в себе почти все то, что люди знают и делают» практически в любой сфере деятельности в процессе преобразования различных ресурсов. Другими словами, технология – это учение об искусстве осуществления деятельности человека, системная технология – это учение об искусстве осуществления системной деятельности. До начала периода промышленных революций технология означала описание искусства деятельности, результатом которого являлись полезные человеку изделия. Действительно, в допромышленный период имело место искусство ремесленника, недоступное другим, требующее длительного периода изучения. Машина сделало многие ремесла массово доступными, каждый, пройдя обучение и овладев совокупностью нехитрых приемов, получал возможность изготавливать, вместе с машиной и другими рабочими, в массовых количествах те изделия, которые мог изготавливать средний ремесленник. Постепенно слово технология стало менять смысл и приспосабливаться к способам промышленного изготовления изделий, что видно из определений И.Н. Березина и Советской энциклопедии. В настоящее время происходит распространение термина «технология» на все сферы человеческой деятельности, как термина, описывающего искусство коллектива людей или одного человека высокоорганизовано (как система машин, в хорошем смысле) осуществлять деятельность, представляя собой своего рода «интеллектуальную систему машин» (коллектив людей) или «интеллектуальную машину» (человек). Эта закономерная трансформация понятия «технология» является отражением действия Закона технологизации, обоснованию и формулировке которого посвящен настоящий раздел. * Модель преобразования ресурсов в деятельности человека можно представить в виде, показанном на рис. 1.3. В каждом конкретном процессе деятельности Д человека преобразуются восемь видов ресурсов: информационный I, материальный М, человеческий Р, энергетический Е , ресурс недвижимости, машин и оборудования А, коммуникационный ресурс С, природный ресурс N, финансовый ресурс F. При математическом описании процессы преобразования ресурсов представляются в виде функций времени t: M(t), I(t), P(t), E(t), F(t), N(t), C(t), A(t). Для более полного представления деятельности человека в виде модели преобразования ресурсов необходимо, конечно, включить и ресурс времени. Мы не будем рассматривать здесь время как ресурс деятельности, позднее мы отдельно остановимся на этой проблеме. Также, для того, чтобы не загромождать описание, мы не вводим здесь индексов для различия между «входным» и «выходным», по отношению к деятельности, потоками ресурсов. Рис. 1.3. Преобразование ресурсов в деятельности человека * Если деятельность человека является целенаправленной и для достижения цели необходимо изготовление изделия, то часть деятельности, которая нужна для изготовления изделия, является технологией. Другими словами, деятельность человека может представлять собой комплекс из нескольких видов деятельности, включающий в том числе и технологию – вид деятельности человека, осуществляемый для изготовления изделия. В свою очередь, изделие используется в другой деятельности для достижения цели. Этой целью может также быть изготовление другого изделия. Например, «первое» изделие – клавиатура компьютера, «второе» изделие – компьютер, «третье» изделие – компьютерная сеть и т.д. Технологии, в конечном счете, образуют сети, комплексы технологий, своего рода технологические метакомплексы в общественном производстве. * Во внешней среде, окружающей определенную деятельность человека, имеет смысл различать три важных компонента – источники ресурсов для преобразования в деятельности человека, потребители преобразованных ресурсов и источник цели деятельности (рис. 1.4). Здесь можно, напр., различить две системные триады: первая – «источник цели, деятельность по преобразованию ресурсов, деятельность потребителя преобразованных ресурсов», вторая – «источник цели, источник ресурсов для преобразования в деятельности, деятельность». В каждой из них, в соответствии с законом системности, должна использоваться «своя» одна общая модель для описания всех трех систем в триаде. * Любую деятельность человека можно представить как производственную деятельность, которая включает технологию. Производственная деятельность может быть описана как триада систем: технология изготовления изделия (система-объект), экономико-административная система управления технологией (система-субъект), изделие, продукт (система-результат). В соответствии с законом системности, все эти три системы должны описываться одной моделью общей системы. Более подробному рассмотрению этой триады посвящена глава 7. Производственная деятельность, как триада систем, физически реализуется в виде предприятия. Вычленение предприятия в макросистеме общественного производства производится путем наделения его правами собственности на часть преобразуемых ресурсов. Но предприятие осуществляет преобразование и тех ресурсов природы и общества, на которые его права собственности не распространяются. Рис. 1.4. Компоненты внешней среды деятельности Все технологии деятельности будем классифицировать по их участию в переработке различных видов ресурсов по следующим признакам. а) Отношение к цели деятельности. Здесь можно выделить два класса технологий – основные, т.е. осуществляющие преобразование ресурса для изготовление изделия и вспомогательные, т.е. осуществляющие преобразования ресурса для обеспечения основной деятельности. б) Принадлежность к предприятию. По этому признаку можно выделить две части любого ресурса, преобразуемого в деятельности – собственность предприятия и ресурс внешней среды. В соответствии с этим и технологии можно разделить на технологии внутренние и технологии влияния на внешнюю среду. в) Происхождение ресурсов. По этому признаку можно выделить две части любого вида ресурса – природные и, кроме того, искусственные, т.е. возникшие в результате человеческой деятельности. Соответственно этому и технологии можно разделить на технологии преобразования природных ресурсов и технологии преобразования искусственных ресурсов. г) Сочлененностъ, единство функционирования, «параллельность» технологий. По этому признаку можно выделять множества «параллельных» технологий. Все технологии, входящие в такое множество, могут осуществляться по определенным причинам только «параллельно», «совместно», «сочлененно», «комплексно». * Информационный ресурс I, преобразуемый деятельностью человека, имеет две основные группы компонентов – информационный ресурс, преобразуемый для изготовления информационного изделия (напр., в виде программного продукта) и информационный ресурс, обеспечивающий преобразование какого-либо вида ресурса (напр., материального) для изготовления изделия (напр., столового набора посуды). Если мы рассматриваем информационную технологию, тогда присутствует первая группа компонентов информационного ресурса – информационное сырье, материалы, комплектующие, покупные изделия и др. составляющие входного потока информационного ресурса, необходимые для изготовления информационного изделия. Если мы рассматриваем любые технологии, в т.ч. и информационные, то всегда присутствует вторая, обеспечивающая группа компонентов информационного ресурса – технологические схемы и регламенты, информация о поставщиках, потребителях и конкурентах, экономическая, финансовая, рекламная, маркетинговая информация и т.д. Важными компонентами информационного ресурса являются, в данном случае, различные виды интеллектуального ресурса: изобретения, полезные модели, промышленные образцы, товарные знаки, торговые марки, знаки соответствия, знаки обслуживания, наименования мест происхождения товаров, новые сорта растений, новые породы животных, а также топология микросхем, базы данных, программы для ЭВМ, произведения литературы, искусства (живопись, скульптура, архитектурные проекты, музыкальные произведения, театральные постановки и др.), информация о репутации предприятия, гудвилл. Информационный ресурс, содействующий осуществлению технологии, содержит также результаты научно-исследовательских, проектных и опытно-конструкторских работ, содержащиеся в проектной, конструкторской и технологической документации, ноу-хау, системы организации производства, системы управления (напр., управления качеством, кадрами), производственный опыт и образование персонала, методики подготовки, переподготовки и повышения квалификации персонала. Эти и другие информационные ресурсы обосабливаются, как собственность предприятия, если предприятие имеет надлежащим образом оформление права на них. Информационные технологии на предприятиях информационного производства (газетные статьи, результаты НИР, компьютерные игры и т.д.) обязательно «сочленены» с технологиями производства материального носителя информации (газет, монографий, дискет, компакт-дисков и т.д.). * Материальный ресурс М, преобразуемый деятельностью человека (оборотный материальный ресурс), также имеет две основные группы компонентов – материальный ресурс, преобразуемый для изготовления изделия (напр., измерительного прибора) и материальный ресурс, обеспечивающий деятельность по изготовлению какого-либо вида изделия. Если мы рассматриваем материальную технологию, то тогда обязательно присутствует первая группа компонентов – сырье (напр., руда цветных металлов), материалы (напр., для изготовления печатных плат), покупные изделия (напр., резисторы, конденсаторы, микросхемы) и другие составляющие входного потока материального ресурса, форма, состояние и свойства которых непосредственно преобразуются для изготовления изделия. Если мы рассматриваем любые технологии, в том числе и материальные технологии, то всегда присутствует вторая, обеспечивающая группа компонентов материального ресурса – напр., горюче-смазочные материалы, ремонтный инвентарь, горячая и холодная вода, пар, сжатый воздух и т.д. * Энергетический ресурс Е, преобразуется энергетическими технологиями, которые по отношению к цели деятельности являются основными на предприятиях энергетического производства и вспомогательными на других предприятиях. По принадлежности преобразуемого ресурса к энергетическому предприятию энергетические технологии можно разделить на технологии преобразования энергии в самом процессе производства энергии и во внешней среде. По признаку происхождения энергетического ресурса можно выделить природные и искусственные энергетические технологии. Энергетические технологии могут быть сочленены с другими технологиями, напр., с материальными. Так, производство потенциальной электрической энергии сочленено, напр., с параллельной материальной технологией производства аккумулятора, производство потенциальной энергии взрыва сочленено, напр., с параллельной материальной технологией производства взрывчатки и взрывчатых устройств и т.д. * Человеческий ресурс Р, является комплексным и содержит информационную (в т.ч., напр., интеллектуальный ресурс), материальную, энергетическую компоненты. Целью деятельности по преобразованию человеческого ресурса является выживание, сохранение и развитие человеческого общества. Выживание человеческого общества связано, прежде всего, с такими качествами человеческого ресурса, как наличие идей и целей, знаний, умений и навыков. Идеи и цели определяют направление «движения» общества, знания, умения и навыки – это та «сила», которая создает «движение». Поэтому развитие человеческого ресурса определяет развитие общества. В свою очередь, наличие и прогресс (или, наоборот, исчерпаемость и регресс) человеческого ресурса зависят от уровня технологий образования, просвещения, воспитания, создания здоровья, биоэнергетики человека. Деятельность по преобразованию человеческого ресурса содержит информационные, материальные и энергетические человеческие технологии. По отношению к цели какой-либо деятельности человеческие технологии также могут быть разделены на основные (напр., в учреждениях образования) и на вспомогательные (напр., технологии повышения квалификации рабочих на металлургических производствах). По признаку принадлежности к предприятию можно выделить технологии преобразования человеческого ресурса предприятия и технологии влияния на человеческий ресурс вне предприятия. Напр., к первой группе можно отнести технологии преобразования человека, как рабочей силы, в процессе производства автомобилей, ко второй – технологии влияния на людей автомобилями, производимыми предприятием. По признаку происхождения преобразуемых ресурсов, видимо, существуют природные и искусственные человеческие технологии. По признаку параллельности человеческие технологии могут реализовываться параллельно с другими информационными, энергетическими и материальными технологиями производства (производство автомобилей, продуктов питания, массовая пропаганда и агитация в обществе, технологии рекламы и маркетинга и т.д.). Уже отмечалось, что собственно человеческие технологии – это совокупность информационных, материальных и энергетических технологий. Информационные человеческие технологии — это технологии преобразования свойств, формы и состояния информационного ресурса человека и общества (технологии печати, радио, телевидения, массовой пропаганды и агитации в обществе, масс-медиа и др.). Один из классов информационных человеческих технологий – интеллектуальные человеческие технологии, т.е. технологии преобразования свойств, формы и состояния интеллекта человека и общества, напр., технологии образования, воспитания, просвещения. Материальные человеческие технологии — это технологии преобразования свойств, формы и состояния человеческого тела. Из них, напр., можно выделить природные материальные человеческие технологии, которые напр., заданы генетическим кодом роста человеческого тела от зародыша до взрослого человека и искусственные материальные человеческие технологии, напр., технологии бодибилдинга, клонирования, формирования здоровья, красоты, физической силы, здравоохранения, медицины и др. Энергетические человеческие технологии — это технологии преобразования свойств, формы и состояния энергии человека. Из них можно выделить, природные энергетические человеческие технологии, которые связаны с влиянием, напр., магнитного поля земли или космических лучей и искусственные энергетические человеческие технологии, которые связаны, напр., с энергетическим воздействием людей друг на друга, линий электропередач на человека и т.д. Человеческие технологии могут быть и комплексными. Так, медицинские технологии преобразуют физическое состояние организма и, одновременно, могут повысить уровень знаний человека о здоровом образе жизни и изменить его биоэнергетику. Существенным можно считать и то обстоятельство, что человеческие технологии следует разделять и по «массовости» – на индивидуальные технологии, преобразующие свойства, форму, состояние компонент человеческого ресурса одного человека и на социальные, преобразующие свойства, форму, состояние множества людей. В индивидуальных технологиях может преобразовываться одновременно несколько человек, но эти технологии (преподавания, напр.) таковы, что обеспечивают индивидуальное преобразование, независимое от параллельного преобразования других людей (за счет мастерства и «индивидуального подхода» преподавателя, напр.). * Финансовый ресурс F – предмет труда в финансовой деятельности. В финансовой деятельности могут быть построены финансовые технологии, которые являются основными на фондовом рынке, в банковском деле, в страховании, в других секторах финансовой деятельности и вспомогательными в сфере материального, энергетического, информационного и других производств. Финансовая деятельность, в т.ч. та ее часть, которую можно назвать финансовыми технологиями, преследует цели извлечения денежной прибыли путем преобразования финансовых ресурсов различного вида. По принадлежности к предприятию можно выделить два класса финансовых технологий – внутренние технологии, осуществляемые на предприятиях финансовой сферы (банки, страховые компании, фондовые биржи и др. предприятия фондового рынка и т.д.) и технологии влияния на состояние финансов окружающей среды обшественного производства. По происхождению ресурсов – финансовые технологии могут быть только искусственными. По признаку сочлененности, параллельности осуществления финансовые технологии «соединены», напр., с технологиями жизненного цикла (производства, обращения и замены) денежных банкнот, ценных бумаг, с информационными технологиями маркетинга и рекламы и др. * Природный ресурс N преобразуется практически в любом виде деятельности человека и в природе. Природные технологии являются основными в деятельности природы и вспомогательными в сфере человеческой деятельности по признаку отношения к цели деятельности. Так, природные технологии ресурсов растительного и животного мира, почвы, воздуха, воды, создания запасов подземных вод, руд цветных металлов, нефти, газа являются основными в деятельности природы по созданию и поддержанию ресурсов своей жизнедеятельности и вспомогательными для деятельности человека по получению питьевой воды, изделий из цветных металлов, нефтепродуктов. По принадлежности к предприятию, создаваемому человеком, природные ресурсы могут «отчуждаться» от природы и входить в недвижимость, машины, оборудование и материальные ресурсы, преобразуемые технологиями предприятия (земля, вода, животный и растительный мир, воздух, недра земли) либо права на пользование природными ресурсами учитываются как нематериальные активы предприятия. По этой причине нет внутренних природных технологий. Все природные технологии любого предприятия по этому признаку является технологиями влияния на внешнюю природную среду. По признаку происхождения природных ресурсов, видимо, к природным технологиям относятся технологии преобразования природных ресурсов, а также технологии преобразования природой ресурсов искусственного происхождения в виде отходов деятельности человека. По признаку сочлененности технологий природные технологии образуют сложные и крупномасштабные комплексы технологий преобразования растительного и животного мира, водных систем и др. компонент природного ресурса. * Коммуникационный ресурс С может быть материальным, информационным, природным, энергетическим, финансовым, человеческим ресурсом, ресурсом недвижимости, машин и оборудования. Цель коммуникационной деятельности – осуществление взаимодействия между технологиями и предприятиями, осуществляющими целесообразные преобразования различных ресурсов. Основные компоненты коммуникационного ресурса – транспорт (линии связи – транспорт информации, наземный, водный, воздушный транспорт, линии электропередач) и склад (базы и банки данных, аккумуляторы энергии, хранилища денег, резерв кадров, склады комплектующих, сырья, покупных изделий и т.д.). По признаку отношения к цели коммуникационной деятельности могут различаться основные коммуникационные технологии, осуществляемые на коммуникационных предприятиях (сети и системы связи и передачи данных, распределенные банки данных, радио, телевидение, печать, предприятия транспорта и связи, нефте – и газопроводы и т.д.) и вспомогательные коммуникационные технологии на предприятиях материального, энергетического, информационного производства и других. По признаку принадлежности к предприятию могут осуществляться технологии внутренние, преобразующие коммуникационный ресурс (коммутируемый ресурс) предприятия и технологии влияния на внешнюю среду (радиопомехи и помехи в сетях передачи данных, информационное воздействие на человеческий организм вблизи мощных источников излучения радиосигналов, загрязнение окружающей природной среды, непрогнозировавшееся информационное воздействие телепередач и т.д.). По признаку сочлененности технологий коммуникационные технологии образуют большие и крупномасштабные комплексы технологий преобразования всех видов ресурсов. * Ресурс недвижимости, машин и оборудования А преобразуется во всех выше описанных видах технологий. Непосредственно с этим видом ресурса связаны технологии поддержания его в работоспособном состоянии, т.е. в состоянии, пригодном для осуществления производственной деятельности (технологии восстановления, ремонта, сервисного обслуживания и др.) на протяжении всего жизненного цикла недвижимости, машин, оборудования. По признаку отношения к цели деятельности технологии поддержания является вспомогательными. По признаку принадлежности технологии поддержания являются внутренними и могут осуществляться на специализированных предприятиях. Их осуществление может оказывать заметное влияние на окружающую среду. По признаку происхождения ресурсов они являются технологиями поддержания искусственных ресурсов (машин, оборудования, зданий, сооружений) и технологиями поддержания природных ресурсов (водоемов, рек, почвы, воздуха). По признаку сочлененности технологии поддержания образуют комплексы совместно с основными технологиями производства. В целом ресурс А – это ресурс, позволяющий осуществлять деятельность в определенном месте, по определенной технологии и за определенное время (единство времени, места и технологии). Надо также отметить и технологии, связанные с созданием этого ресурса – технологии строительства и машиностроения. * Технологии, рассмотренные выше, могут создаваться и использоваться в различных сферах деятельности: наука, искусство, литература, архитектура, строительство, промышленное и сельскохозяйственное производство, энергетика, машиностроение, транспорт, экономика, образование, здравоохранение, культура, управление, планирование, лицензирование, аттестация, аккредитация, экспертиза, контроль, консалтинг, проектирование и управление проектами, аудит, оценочная экспертиза, кадровая политика, экология, социальная сфера, экологическая экспертиза, архстройэкспертиза, научная экспертиза, социология, демография, адвокатская, судебная и другая правоохранительная деятельность, оборона, туризм, печать, радио, телевидение, недропользование и т.д. Конечно, то, что называется технологией, должно удовлетворять определенному набору определений, Законов, принципов построения, которые изложены в главах 1,2,3. * Превращение процессов деятельности в технологии (технологизация) – один из основныхЗаконов развития деятельности. Это утверждение обосновано в разделе 1.1 и дополнительно подтверждается следующими положениями: – в соответствии с определенными мотивациями, возникающими при взаимодействии человека с внешней средой, человек ставит перед собой все новые цели в решении одной проблемы: выживание и развитие. Для достижения целей человек осуществляет различные виды деятельности; – все процессы деятельности содержат компоненты творчества и технологий; творчество здесь понимается как совокупность неформализованных, нерегламентированных процедур, действий, движений, а технологии, напротив, как совокупность формализованных, регламентированных процедур, действий, движений. Можно утверждать, что, в отличие от творчества, технология, как процесс, обладает свойством определенности; – технология четко определяет результат деятельности – изделие, которое необходимо для достижения цели, т.е. обладает свойством результативности; – технология делает цель серийно достижимой, т. е. процесс достижения цели из уникального, творческого становится массовым. Технологизация сводит исходную задачу изготовления изделия «за раз», которая является массово невыполнимой, к массово выполнимой задаче изготовления изделия с помощью комплекса «простых» процессов. Технология, в силу этого, обладает свойством массовости; – технологизированные виды деятельности позволяют осуществлять их любому человеку, подготовленному в соответствии со стандартными требованиями; – технологизация высвобождает творческий ресурс человека для нахождения, в частности, технологий решения других задач выживания и развития; – в отличие от технологизированной, творческая деятельность приводит к изготовлению единичного изделия, в т.ч. и в виде новых технологий. * Перечисленные и многие другие особенности технологий являются проявлениями Закона технологизации, который можно сформулировать в следующей форме: Для удовлетворения потребностей человека и общества необходима технологизация, т.е. преобразование процессов творчества, доступного единицам, в технологии, доступные всем и обладающие свойствами массовости, определенности, результативности, посредством создания и реализации технологических систем. * Технологизация позволяет в любой сфере деятельности человека разделить творческую и технологизированную ее части. Творческая деятельность связана с задачами, процесс решения которых по каким-либо причинам не имеет четкого формального описания в виде заданной последовательности процедур, в форме некоторого регламента. В большинстве случаев заранее неизвестно и то, как будет выглядеть это изделие, а также может быть недостаточно четко описана цель. Во многих случаях не исключается и получение отрицательного результата. Для реализации творческой деятельности широко используются вспомогательные технологии, напр., технологии научных исследований; они могут представлять собой материальные и информационные технологии подготовки и проведения научного эксперимента, дающие возможность собрать и предварительно обработать исходную информацию. * Технологии и возможности технологизации процессов достижения некоторой цели F средой М приводят, как уже показано, к созданию триады систем «субъект, объект, результат». Система-результат, т.е. изделие системы-объекта, предназначено для достижения цели F средой М. Но в процессе функционирования система-объект начинает действовать в собственных интересах, например, в целях получения максимальной прибыли от производства изделий. Система-субъект может быть солидарна со средой М в необходимости достижения цели F, но одновременно она прикладывает усилия к совместному получению максимальной прибыли от производства изделия. В то же время система-субъект может прикладывать усилия к получению прибыли от других видов деятельности. В целом триада систем и каждая из систем могут преследовать эгоистические цели, отличные от первоначальной цели F, достижение которой необходимо среде М. В связи с этим одна из задач системной технологии – изучение совместного действия Законов системности и технологизации при создании мотивации деятельности технологических систем. Результаты, полученные в данном разделе, впервые позволяют увидеть с единых позиций сформулированного здесьЗакона технологизациивсе многообразие и единство возможных технологий и возможности их конструированияс помощью системной технологии,которая представляет собой науку об искусстве системности в осуществлении технологий деятельности человека. 1.4. Модель достижения цели в системах и технологиях Процессы, осуществляемые в системах, наряду с такими понятиями как структура, элемент, элементарный процесс, являются основным объектом изучения системной технологии. * По своему замыслу человеческая деятельность, как правило, целенаправленна, т.е. преследует определенные цели, и целесообразна, т.е. строится так, чтобы делать все, что надо для достижения цели и «не делать ничего лишнего». Принцип системности и классификация технологий деятельности, разработанные в предыдущих разделах, описывают, в частности, целесообразные действия по конструированию и реализации системной сознательной деятельности, в том числе и технологической деятельности, связанной с изготовлением изделий, необходимых для достижения некоторой цели. В данном разделе мы рассматриваем целенаправленную человеческую деятельность, в том числе и технологическую, как состоящую из процессов достижения цели. Для технологической деятельности, например, цель заключается в извлечении максимальной выгоды (полезности для себя в материальном или ином плане) путем изготовления изделия «по заказу» внешней среды. Эта цель, конечно, значительно отличается, по меньшей мере, от той первоначальной цели, для достижения которой внешняя среда «заказывает» производственной системе данное изделие, но никак не влияет на общее свойство процесса – его целенаправленность и целесообразность. Ниже описывается системная модель процесса деятельности, которая содержит наиболее общие черты процесса человеческой деятельности, организуемого и проводимого с определенной целью. Эта модель адекватно и просто описывает, в том числе и собственно процессы организации и управления процессами достижения цели. В главах 5–11 будет показано, что предлагаемая модель позволяет дать системное описание всех компонент управляемых и организуемых процессов. * В каждом процессе деятельности, как в процессе достижения цели, можно различить следующие основные этапы: 1) формулирование цели, 2) определение наличных ресурсов, 3) нахождение методов использования ресурсов для достижения цели, 4) установление ограничений, 5) применение найденных методов для осуществления процесса достижения цели, 6) оценка эффективности процесса достижения цели и окончание данного процесса, если достигнута удовлетворительная оценка. Если оценка эффективности неудовлетворительна, то происходит переход к этапу 7) корректировка этапов (всех или части) 1–4 и повторение этапов 5,6. * Граф, показанный на рис. 1.5, отражает взаимосвязь этапов в процессе достижения цели. Он является смешанным, т.е. содержит ориентированные ветви такие, как (1,5), (2,5), (3,5) и др., и неориентированные, такие, как (1,3), (1,7) и др. По ориентированным ветвям информация от одного этапа – преобразователя информации к другому (они отражаются вершинами графа) передается в одном направлении, неориентированные ветви отражают возможность обмена информацией в обоих направлениях [3]. Например, по ветвям (1,3), (2,3), (3,4) возможен такой обмен информацией при нахождении методов достижения цели: информация о выбранной цели, ресурсах и ограничениях используется в вершине 3 графа для нахождения методов; какой-либо вариант метода вносит корректировку в формулировку цели, требует коррекции ограничений и ресурсов и т.д. Подробные циклические обмены совершаются и при осуществлении этапа 7. Рис. 1.5. Граф процесса достижения цели. * В свою очередь, каждая вершина этой модели будет представлять собой систему: целей, ограничений, ресурсов, методов, применения методов, оценки эффективности и координации. * Цели. Например, для процесса обучения, если рассматривать его как часть производственного процесса образовательного учреждения, цели могут заключаться в максимизации усвоения материала преподаваемого предмета, минимизации материальных затрат на создание компьютерных технологий, максимизации производительности труда обучаемого по созданию нового комплекса знаний и умений «в себе» и др. Для описания целей в процессе обучения могут также использоваться показатели, отражающие объем материала, «подаваемого» в определенном разделе курса и показатели сбалансированности разделов программы данного курса. Все присущие процессу обучения цели могут объединятся в систему либо с помощью логических условий, определяющих порядок их достижения (например, условие: вначале достичь целей – показателей актуальности и сбалансированности учебных планов, затем достичь цель – оптимизация методики преподавания для конкретной группы потребителей образовательных услуг и т.д.), либо с помощью формул и правил, устанавливающих взаимные влияния целей и показателей друг на друга. Если мы рассматриваем технологические процессы, то их целью является изготовление некоторого изделия, выпуск некоторого продукта по заказу внешней среды. Эта формулировка подходит для описания цели любого процесса и любой процесс может трактоваться, как технологический процесс в смысле формулирования цели деятельности. В самом деле, научные результаты – продукты научной деятельности, «изделия» научных технологий, социальные результаты – продукты, изделия социальных технологий, проекты – изделия конструкторских (проектных) технологий, знания, умения и навыки выпускников – изделия, продукты образовательных технологий и т.д. Все эти изделия нужны внешней среде для достижения различных целей – совершенствования процессов производства, удовлетворения информационного голода, создания общественного мнения, улучшения качества человеческого ресурса и т.д. В системной триаде формулирование (в т.ч. и корректировка) целей осуществляется системой-субъектом в процессах проектирования, конструирования, управления, исследований технологий деятельности. * Ресурсы, используемые в производстве, – материальные, энергетические, человеческие, информационные, временные и др., объединяются в систему, в частности, с помощью норм затрат различных ресурсов на производство продукции, напр., образовательной (нормативная учебная нагрузка на одного преподавателя, среднее количество студентов на одного преподавателя университета и т.п.). В тех случаях, когда мы рассматриваем любые процессы, как технологические процессы, в качестве ресурсов рассматриваются совокупность ресурсов, содержащих преобразуемый предмет труда и ресурсы, необходимые для построения и поддержания работоспособности технологий: люди, машины, компьютеры, земля, недвижимость и др. В системной триаде формирование совокупности ресурсов – задача системы-субъекта. * Ограничения, накладываемые на различные виды ресурсов, на методы и на цели, также взаимосвязаны; увеличивая либо уменьшая предельные значения использования одного вида ресурса (например, число максимально используемых станков, машин), необходимо изменять и предельно допустимые значения других видов ресурсов (например, человеческих). Ограничения, накладываемые на ресурсы, могут повлиять на совокупность используемых методов и на систему реально достижимых целей и т.д. В тех случаях, когда мы рассматриваем процессы человеческой деятельности, как технологические, необходимы ограничения в виде регламентов, ограничивающих все аспекты создания и протекания процесса (цели, методы, ресурсы), обязательность технологической дисциплины и многие другие принципы и модели осуществления технологий, описанные в главе 2. В системной триаде – это действия, осуществляемые системой-субъектом. * Методы. Методы, применяемые для целенаправленного преобразования ресурсов, существенно зависят от многих факторов: вид ресурса, состояние знаний в данной области, ограниченность трудовых ресурсов определенного рода и др. Собственно методы, применяемые, напр., для развития человеческого ресурса и методы, необходимые для преобразования энергии, действительно качественно во многом отличны. Но способы их организации в систему могут содержать общие правила. Одним из таких «сводов общих правил» является системная технология. Если мы рассматриваем совокупность методов преобразования ресурсов, как технологию, то мы применяем к ее формированию и реализации те требования к технологиям и те требования к системности этих технологий, которые установлены в главах 1–4. И тогда мы рассматриваем совокупность методов, как часть технологии целенаправленного преобразования ресурсов для изготовления заданного изделия. В системной триаде – это деятельность системы-субъекта. * Применение найденных методов использования ресурсов для достижения целей при заданных ограничениях должно, естественно, носить системный характер, хотя бы в силу необходимости установления определенного организационного порядка применения систем методов, целей, ограничений и ресурсов. Если мы рассматриваем технологии деятельности с позиций системной технологии, то данный этап деятельности в системной триаде осуществляется системой-объектом – технологической системой по преобразованию ресурсов для изготовления изделия. * Система оценки эффективности процесса достижения целей это, в простейшем случае, оценка совпадения системы практических результатов с системой поставленных целей. Это может быть также система определения момента достижения результирующим показателем деятельности некоторого экстремального значения, либо определения вхождения количественной оценки результата в некоторые допустимые пределы отклонения от заданного значения. В более сложных ситуациях оценка эффективности процесса достижения цели основывается на экспертных методах; например, при оценке стоимости интеллектуальной собственности может создаваться несколько вариантов оценки, созданных по разным методикам и приемлемых по конкурирующим критериям. В таком случае окончательный вариант выбирается путем экспертной оценки. В системной триаде – это процесс, осуществляемый во взаимодействии системы-субъекта и системы-результата. Если мы рассматриваем технологии, то это процесс контроля со стороны системы управления технологией (напр., технического контроля, экологического контроля, потребительского контроля и т.п.) параметров изделия на соответствие требованиям внешней среды. * Координация – это этап, осуществляемый системой-субъектом при взаимодействии с внешней средой и с создаваемым или с корректируемым процессом достижения цели. Если мы рассматриваем технологии, то координация – это та часть управления технологическим процессом, которая определяет возможности развития технологии в соответствии с развитием потребностей внешней среды. * Целенаправленная деятельность содержит циклы, что очевидно из рассмотренной модели. Известно, что такие структуры могут быть неустойчивыми, в таком случае процессы, осуществляемые в них, не приводят к достижению цели. Неустойчивость процесса является следствием неблагоприятного сочетания статических и динамических характеристик средств, используемых на каждом этапе. Синтез устойчивой структуры системы для реализации процесса достижения цели сам по себе является сложной задачей и с помощью практически применимых формальных правил решен для довольно узкого круга технических систем. В социальных, человеко-машинных и технических и др. системах, которые могут быть использованы для реализации процессов достижения целей, обеспечивающих устойчивое протекание процесса, должны решаться задачи, связанные с обеспечением различных качественных показателей упорядоченности, надежности и эффективности взаимосвязанных экономических, экологических и социальных систем. * На основе предложенной системной модели процессов достижения цели может конструироваться система для реализации процесса. Конструирование и реализация системы для осуществления заданного процесса достижения цели также является процессом достижения цели и реализуется с помощью каких-либо уже функционирующих систем исследования, проектирования, конструирования, управления и др. Конструируемая система и процесс достижения цели, для осуществления которого она создается, в ходе создания развиваются, влияют друг на друга, потому, что, во-первых, в начале всегда имеется исходная неопределенность в описании самого процесса достижения цели, и, во-вторых, реализация процесса достижения цели тесно связана с особенностями создаваемой системы. Предлагаемая модель описывает взаимодействие в системной триаде, состоящей из системы-субъекта, системы-объекта и системы-результата, в процессе достижения цели. * Развитие описанной системной модели процесса далее должно происходить с учетом следующих обстоятельств. Во-первых, любой процесс достижения цели неизбежно расчленяется на более простые, те, в свою очередь, также должны расчленяться и т.д. до простейших процессов (операций, движений, переходов и т.д.). Во-вторых, процесс достижения цели является всегда подпроцессом более сложного процесса (например, процесса создания и развития системы для осуществления данного процесса достижения цели). В результате, предложенная модель всегда входит в систему моделей и является, как система, частью более сложной системы. * Предложенная модель позволяет наглядно описывать и конструировать процессы достижения цели в самых разных видах деятельности, в том числе и при построении и реализации технологий. Так, макропроцесс индустриализации упорядочивается с помощью этой модели следующим образом. Цель индустриализации – создание производственной системы. Ресурсы, используемые в процессе индустриализации – природные, человеческие, информационные, машин и оборудования и др. Методы индустриализации – машинизация и технологизация. Ограничения индустриализации связаны с возможными размерами использования ресурсов и с допустимостью конкретных методов. Применение выбранных методов означает собой пробную (или окончательную) реализацию выбранных вариантов технологизации и машинизации данной деятельности. Оценка эффективности выбранных вариантов производится и при пробном и при «окончательном» вариантах. Координация — создание экономико-административной системы управления, проводится, как правило, при выборе окончательного варианта машинизации и технологизации и приводит к созданию производственной системы. Здесь также возможны одна или несколько пробных реализаций. Аналогичным образом можно показать применение этой модели и для процессов технологизации, машинизации и любых других. С помощью данной модели системной технологии любой, сколь угодно сложный процесс деятельности можно представить в простой форме, позволяющей описать его в виде последовательности простых и понятных операций, действий, движений. В результате можно сложные процессы преобразования ресурсов в системах представить, как систему простых и наглядных процессов, причем в единообразной графической форме. Вследствие этого появляется возможность алгоритмизации сложных процессов создания и реализации технологических систем и управления ими для любых процессов деятельности. В последующих главах будет показано эффективное применение этой модели для решения задач системной технологии для любых видов деятельности. Глава 2. Технологии 2.1. Особенности моделирования технологий Технологии осуществляются посредством различных орудий труда, в т.ч. и посредством машины. Технологии, в т.ч. и технологии производства машин, состоят из отдельных операций. При осуществлении материальных технологий производства должны быть реализованы ряд известных принципов [4], которые можно сформулировать следующим образом. * Качественное расчленение и количественная пропорциональность процессов(принцип пропорциональности). Принцип пропорциональности в простейшем случае можно выразить следующим образом: число рабочих на операциях должно быть пропорционально трудоемкости обработки изделия. Данный принцип требует такого построения технологии, которое обеспечивало бы прохождение через все операции за определенный отрезок времени одинакового количества изделий. * Постоянство и равенство затрат времени на производство каждой единицы данной продукции(принцип ритмичности). Для того, чтобы обеспечить постоянство результатов технологии, необходимо идентичное повторение каждой операции за одно и то же время при производстве каждой новой единицы продукции. При этом условии одинаковые изделия могут быть получены за равные промежутки времени. * Одновременность осуществления операций(принцип параллельности). В технологиях необходимо находить и распределять между различными рабочими местами операции, которые можно совершать одновременно (параллельно). В результате возникают параллельные цепи (циклы) технологий. * Непрерывность комплекса технологий(принцип непрерывности). При построении комплекса технологий необходимо находить такие структуры, при которых обеспечивается минимум ожидания предмета труда перед каждой последующей операцией комплекса технологий. * Этапы развития технологии – «ремесло для себя», ремесленные мастерские («ремесло на заказ»), мануфактурное производство, промышленные технологии (конвейерные, поточные и др.), современные технологии (основанные на комплексах машин), можно рассматривать, как этапы последовательной передачи функций человека машинам. В современных промышленных технологиях машине передаются не только функции, связанные непосредственно с преобразованием предмета труда, но и функции, связанные с управлением производством. На производстве машине поручается не только физический, но и интеллектуальный труд. В свою очередь, способность машины выполнять интеллектуальный труд приводит к возможностям применения законов построения материальных технологий для производства «интеллектуальных» изделий: управленческих решений, проектов, изобретений и другого «интеллектуального» продукта. Другими словами, если человек в настоящее время при производстве своей интеллектуальной продукции по уровню технологий находится на стадиях «ремесло для себя» и «ремесло на заказ», то в дальнейшем он может резко повысить производительность и продуктивность своей интеллектуальной деятельности за счет перехода на новые уровни взаимодействия с машинами с помощью системной технологии. Это многократно доказано опытом применения системной технологии, описанным в главах 5–12. Если в прежние времена возможности машин отставали от потребностей преобразования ресурсов (что, кстати, сохраняется во многих видах материального производства и в нынешнее время), то сейчас возможности вычислительных машин, средств коммуникации и оргтехники во многом превосходят ту практику управленческих, социальных, политических, экспертных, образовательных, и др. технологий, которые осуществляются «интеллектуальными трудящимися» в управлении, образовании, науке, проектировании крупномасштабных программ, экологии и в других сферах общественного производства. * Решить эти проблемы призвана системная технология. Для построения технологий во всех сферах общественного производства системная технология должна будет использовать и такие тенденции совершенствования технологий, как: – переход от прерывистых технологий к непрерывным, – внедрение «замкнутых» (безотходных) технологий, – повышение съема продукции с каждой единицы площади и объема технологического оборудования, – увеличение интенсивности технологий, – снижение материалоемкости (металлоемкости, в частности), – снижение трудозатрат, – увеличение мощности аппаратов и др. Всех уже перечисленных тенденций, условий, принципов недостаточно, чтобы создавать системные технологии на современном уровне. Поэтому далее проведен анализ современных особенностей технологических систем и сформулирован ряд принципов, которые позволяют разрешать эту проблему на практике и в теории. Технологические процессы * Проанализируем технологический процесс, во-первых, как процесс достижения цели, во-вторых, как процесс, осуществляемый в системе (системный процесс), и, в – третьих, проанализируем условия, необходимые для эффективного осуществления технологического процесса. * Технологический процесс, как уже отмечалось, это процесс переработки предмета труда с целью получения новых свойств, формы, состояния. Предмет труда — некоторая совокупность ресурсов. Совокупность ресурсов перед поступлением на технологический процесс – входящий поток, после переработки – выходной поток, в том числе – готовая продукция. Для технологических процессов промышленного производства предметом переработки являются материальные ресурсы. В настоящее время, как уже отмечалось во введении, термин «технология» широко применяется и к переработке информационных, человеческих, энергетических и других видов ресурсов. Цель – придание предмету труда нового состояния реализуется в многочисленных металлургических процессах. Пример – технологические процессы производства титана, в результате осуществления которых титан переходит из связанного состояния, в котором он находится в двуокиси титана, в свободное. Надо сказать, что в процессе производства титан, как и многие другие металлы, переходит в промежуточное состояние. Например, при магниетермическом восстановлении титан из двуокиси переходит в четыреххлористый титан. Здесь изменяется не только химическое, но и физическое состояние: из твердого состояния (двуокись титана) предмет труда переводится в парообразное (четыреххлористый титан). Многочисленные технологические процессы имеют своей целью придание предмету труда определенной формы. Так, в технологических процессах подготовки шихты на металлургических заводах целью является выработка шихты виде гранул определенного размера. Наряду с этим необходимо обеспечить и требуемый состав компонентов (или групп компонентов). В процессах шихтоподготовки могут происходить последовательные изменения состояния предмета труда: жидкая пульпа, поступившая с обогатительной фабрики или образованная из привозных концентратов, смешивается с другими компонентами, сгущается, фильтруется, сушится и переводится в твердое состояние. Цель – придание предмету труда определенной формы, преследуется при токарной, фрезерной и др. механической обработке металлов, при изготовлении швейных изделий, продуктов хлебопекарной промышленности и в других процессах. При переработке полиметаллических руд на обогатительных фабриках цель – придание предмету труда нового свойства, заключающегося в обеспечении повышенного уровня содержания полезных компонентов в концентрате, достаточного для эффективного протекания металлургических процессов по выделению этих компонентов из концентрата. Процесс достижения этой цели разделяется на ряд подпроцессов, объединяемых сложной системой материальных потоков. В этих подпроцессах (дробления, измельчения, флотации, сгущения, фильтрации, сушки) происходят изменения физического состояния предмета труда (из твердой в жидкую и, затем, из жидкой в твердую) и изменения формы (руда дробится и измельчается до заданного гранулометрического состава). Цели – придание предмету труда новых свойств служат, например, технологические процессы крашения и отделки в производствах легкой промышленности. Целями могут быть удаление естественных примесей, обеспечение влажности, равномерной по всему объему, придание нужного цвета, обеспечение прочности, минимальной сминаемости и т.д. * Цели, для достижения которых осуществляются технологические процессы, можно разделить на основные (конечные), промежуточные и сопутствующие. Система основных целей технологического процесса составлена, как правило, заранее, при создании процесса. Так, в систему основных целей металлургического процесса выплавки металла может входить обеспечение максимального содержания полезного компонента в основном материальном потоке или минимального его содержания в отходах, производительность процессов или себестоимость продукции и др. Промежуточные цели возникают на каждом этапе, на каждой стадии технологического процесса: при щелочной пропитке хлопчатобумажной ткани – деминерализация, при расшлихтовке ткани – снятие шлихты (крахмала), при хлорировании двуокиси титана – получение четыреххлористого титана и т.д. Сопутствующие цели – цели, появляющиеся в связи с тем, что после отдельных технологических стадий и операций могут появиться нежелательные побочные эффекты, либо результаты этих стадий нужны только для одной-двух последующих стадий, а для всех последующих неэкономичны, неэффективны, вредны. Например, при мерсеризации хлопчатобумажное полотно обрабатывается едким натром, в результате полотно приобретает повышенную прочность и способность к глубокому и быстрому окрашиванию. Но после окончания мерсеризации едкий натр с полотна надо удалить, так как на любой следующей стадии его присутствие нежелательно. Появляется промежуточная стадия – промывка, осуществляемая с целью – удалить остатки едкого натра с полотна. На систему целей технологического процесса, как процесса достижения цели, влияет, таким образом, выбранный способ осуществления процесса. * Рассмотрим далее технологический процесс как процесс в некоторой технологической системе. Любой технологический процесс состоит из трех видов процессов: транспортирование, складирование и целенаправленная переработка ресурса. Это разделение очевидно из рассмотрения любого технологического процесса. Например, в красильно-отделочном производстве полотно (хлопчатобумажное, трикотажное и др.) складируется перед поступлением на крашение или отделку, затем выборочно транспортируется в соответствии с заданным графиком крашения и окраски, далее взаимодействует в красильных аппаратах и линиях с химикатами и красителями, после чего вновь транспортируется, складируется и т.д. Руды цветных и черных металлов разных месторождений транспортируются к обогатительным и металлургическим производствам, складируются, затем вновь транспортируются к машинам и агрегатам, смешиваются, подвергаются агломерации, плавке, другим видам переработки. В механических производствах заготовки деталей из склада транспортируются к станкам, проходят обработку (токарную, фрезерную или др.), складируются, транспортируются к новой обработке (покраска, сборка и т.п.) и т.д. В целом, комплексы технологических процессов общественного производства образуют сложную сеть, элементарными компонентами которой являются складирование, транспортирование, переработка. Из этих трех типовых компонентов основными компонентами, из которых составляются собственно технологические процессы, являются процессы переработки, в результате осуществления которых перерабатываемый материальный ресурс, как предмет труда, под целенаправленным воздействием приобретает новые свойства, форму, состояние. * Надо заметить, что изменение свойств, формы, состояния преобразуемых ресурсов происходит не только в процессе целенаправленной переработки, но и при транспортировании и складировании. Эти преобразования являются нецеленаправленными, в большинстве случаев вредными, учитываются при проектировании самих технологических процессов, как приводящие к непроизводительным расходам и потерям. * В тоже время и в самих процессах переработки также происходит транспортирование и складирование предмета труда. Так, в процессе агломерации руд металлов концентрат движется с помощью транспортерной ленты в рабочей зоне агломерационной машины, в процессах крашения хлопчатобумажное полотно движется последовательно через рабочую зону различных аппаратов, отлеживается (складируется) в джейбоксах и т.д. Можно привести много примеров и из области переработки информационного, человеческого, энергетического и др. видов ресурсов, из которых явствует, что процессам переработки (взаимодействия) сопутствуют процессы транспортирования и складирования и наоборот. Необходимо отметить, что при создании и реализации комплексов технологических процессов вопросам улучшения процессов целенаправленной переработки уделяется значительно большее внимание, нежели совершенствованию транспортирования и складирования. Это зачастую приводит к большим непредвиденным потерям полезных компонентов в потоках преобразуемых ресурсов (характерны, в данном случае, процессы выработки, транспортирования, складирования сельскохозяйственной продукции, овощей, картофеля, процессы выработки, хранения и транспортирования управленческой информации). Проведенный анализ показывает, что все три типа процессов – переработка, транспортирование, складирование, содержатся в качестве элементов в каждом процессе переработки любого вида ресурса и неравнозначное отношение к этим процессам приводит к необратимым потерям на пути от исходного сырья (руда, сельхозпродукция, поступившие на обучение люди, исходная информация перед началом делового совещания и др.) к конечному продукту (рафинированный металл, мясные изделия, знания и умения обученных специалистов, решение совещания и др.), к его низкому качеству и неприемлемости для потребителя. Уже упоминавшийся принцип непрерывности тесно связан с тем обстоятельством, что любой технологический процесс состоит из трех основных элементарных процессов: переработки, транспортирования, складирования. Принцип непрерывности требует, по своей сути, осуществления технологического процесса с минимально возможными перерывами в переработке, т.е. с минимальными затратами на транспортирование и складирование. * Сформулируем теперь наиболее общее определение технологического процесса, как процесса в некоторой технологической системе, создаваемой для его осуществления. Технологический процесс – это множество элементарных процессов переработки, т.е. целесообразного преобразования предмета труда, и элементарных взаимодействий двух видов – транспортирование и складирование предмета труда. Множество элементарных процессов переработки создается с целью придания материальному (человеческому, информационному, энергетическому и т.д.) продукту переработки (продукту труда) желаемых свойств, формы, состояния. Элементарные процессы транспортирования предназначены для осуществления взаимодействия элементарных процессов переработки в пространстве (передача информации по каналам связи, передача энергии по линиям электропередачи, передача звуковой информации от педагога к слушателю, перевозка сельхозпродукции от поля к месту переработки и т.д.), элементарные процессы складирования – для осуществления взаимодействия во времени (хранение информации в банках данных, хранение деталей и запчастей на складах и т.д.). Принцип непрерывности в системной трактовке должен осуществляться сведением к минимуму затрат времени и ресурсов на осуществление этих взаимодействий. * Перейдем к рассмотрению других (кроме уже рассмотренных принципов непрерывности и др.) условий, которые должны соблюдаться при осуществлении технологических процессов. Одним из главных условий, обеспечивающих заданное протекание технологического процесса, является условие соблюдения технологической дисциплины. Режимы технологических процессов регламентируются технологической документацией (маршрутные карты, операционные карты и т.д.), составляемой при разработке системы технологической подготовки производства. Технологическая дисциплина заключается, таким образом, в обеспечении соответствия хода технологического процесса регламентирующей технологической документации. * Характерной для технологических процессов является стадиальность – разделение на процессы, стадии, связанное с тем обстоятельством, что получение выходного продукта производства из исходных материалов, сырья, комплектующих, изделий, полуфабрикатов и т.п. возможно, как правило, путем постепенного (от операции к операции – в машиностроении, от реакции к реакции в химии и т.д.) изменения свойств, формы, состояния обрабатываемого продукта. Наличие стадиальности технологических процессов приводит к тому, что появляется, как правило, возможность выполнять определенные стадии, операции, фазы процесса последовательно. При этом оказывается, что каждая стадия «посильна» одному человеку или группе людей с соответствующей оснащенностью машинами. Некоторые цепочки последовательных стадий могут осуществляться параллельно друг другу, в соответствии с принципом параллельности, упоминавшимся ранее. В тоже время стадиальность технологических процессов является одним из следствий соблюдения принципов пропорций и ритмичности. Однако соблюдение принципов параллельности, непрерывности, пропорциональности и ритмичности недостаточно для эффективного осуществления стадиальности процессов, так как эти принципы не связаны с понятием целесообразности технологии. С этой позиции необходима формулировка еще одного принципа – принципа обогащения, который обосновывает стадиальность с позиций целесообразности в смысле цели, поставленной перед системой. * Принцип обогащениязаключается в том, что при последовательном прохождении через стадии, циклы и операции технологических процессов исходный продукт теряет «ненужные» (мешающие достижению цели технологического процесса) и обогащается «нужными» (в смысле цели технологического процесса) заданными качествами, формой, состоянием. Так, руда какого-либо месторождения, содержащая нужный металл, обогащается на обогатительных фабриках, предварительно проходит ряд процессов, облегчающих последующую выплавку металла, избавляется, в частности от вредных примесей, плавится, затем металл очищается, рафинируется. Заготовка детали машины или прибора, прежде чем попасть на окончательную обработку на станке с целью придания необходимой формы и размеров, проходит черновую обработку, т.е. «обогащается», постепенно освобождаясь от ненужных свойств и постепенно приобретая полезные заданные параметры. Окрашиваемая хлопчатобумажная ткань проходит через процессы и стадии промывки, обработки химикатами, затем красится, освобождаясь от «мешающих» и приобретая заданные потребительские свойства. * Особенностью современных технологических процессов является способность перестраиваться при изменении ассортимента выпускаемой продукции (при изменении номенклатуры измерительных приборов на приборостроительном заводе, ассортимента тканей и их расцветки на отделочном производстве легкой промышленности, при значительном изменении состава сырья в горнообогатительных производствах и др.). При таких перестройках может изменяться последовательность фаз технологического процесса, что приведет к изменениям в структуре технологической системы. * Важным принципом, который надо учитывать при создании и осуществлении технологического процесса является технологичность выходной продукции, т.е. требование обеспечения такой совокупности свойств выходной продукции, которая обеспечивает оптимальные, в смысле какого либо критерия, затраты ресурсов при создании и осуществлении технологического процесса по сравнению с соответствующими показателями однотипных видов продукции и при обеспечении установленных показателей качества и условий осуществления процесса. Иными словами, свойства, форма, состояние намечаемой к выпуску продукции должны обеспечить более эффективное использование ресурсов для достижения поставленной цели, нежели выпускающиеся однотипные виды продукции. * Одним из основных условий эффективного осуществления технологического процесса является оценка качества и эффективности процесса. В соответствии с установленной системой показателей качества производится контроль на соответствие заданным показателям не только выходной продукции, но и входной продукции (входной контроль) и продукции каждого подпроцесса, передела, операции, перехода и т.д. С целью обеспечения соответствия выпускаемой продукции заданным показателям качества функционирует система контроля и управления качеством, осуществляемая специальными службами. Ход технологического процесса в промышленности также контролируется соответствующими подразделениями. * Обязательным при создании технологических процессов является применение типовых технологических процессов. Типизация должна «устранять многообразие технологических процессов обоснованным сведением их к ограниченному числу типовых и является базой для создания стандартов на типовые технологические процессы [5]. * Современной тенденцией является стремление к созданию максимально (полностью) механизированных, автоматизированных, роботизированных технологических процессов. * Одно из наиболее перспективных направлений совершенствования технологических процессов заключается в создании и использовании гибких автоматизированных систем. В таких системах может эффективно реализовываться способность технологических процессов перестраиваться при частом изменении конструкций и свойств выпускаемых изделий. Применение промышленных роботов может решать проблемы комплексной автоматизации на основе применения типовых роботизированных комплексов. Важнейшей неотъемлемой частью современных производств стали автоматизированные системы управления, являющиеся одним из решающих факторов повышения производительности и эффективности технологических процессов. * Целью современных методов проектирования технологического процесса является создание оптимального технологического процесса с известными оптимальными режимами осуществления; при успешном решении этой задачи управление технологическим процессом сводится к стабилизации расчетных режимов. * В ходе управления технологическим процессом возникают задачи корректировки заданных режимов по разным причинам: старение оборудование, влияние сезонных атмосферных условий, существенное изменение характеристик сырья, материалов, полуфабрикатов, комплектующих изделий и т.д. В этом случае производится расчет новых оптимальных режимов и переход на новые режимы стабилизации технологического процесса. Для цели корректировки и расчета режимов при оперативном управлении технологическим процессом используют различные методы моделирования технологических процессов. Управление, основанное на стабилизации расчетных оптимальных режимов, наиболее желательно с точки зрения согласованного управления комплексами технологических процессов не только на одном предприятии, но и на ряде предприятий, производства которых образуют последовательную цепочку. * Во многих случаях технологические процессы на разных предприятиях (нередко – разных отраслей) образуют процесс, который можно назвать «сквозным», учитывая то, что такой процесс проходит через несколько производственных систем. Так, сквозной технологический процесс образуют процессы добычи руды на горнообогатительном комбинате, выплавки стали соответствующей марки и проката стального листа на металлургическом производстве, изготовления кузовов для автомобилей в автомобильной промышленности. Материальный ресурс, переходя из одной производственной системы в другую, качественно преобразуется в различных по характеру технологических процессах. Таким образом, можно отметить, что, в отличие от многих других видов процессов общественного производства, в технологических процессах имеет место преемственность по материальным потокам. Преемственность по материальным потокам характерна и для всех стадий и переделов любого отдельно взятого комплекса технологических процессов. * В тоже время известно, что материальные потоки в любой современной технологии многокомпонентны. Максимальное извлечение полезных компонентов, свойств, формы – одна из наиболее насущных задач управления технологическими процессами. В этой связи важно соблюдение баланса компонентов, составляющих материальный ресурс. Иными словами, суммарное количество каждого компонента на всех входах и суммарное же количество этого же компонента на всех выходах технологического процесса (комплекса технологических процессов) должны быть равны. Особенно важно соблюдение баланса компонентов в сложных комплексах непрерывных технологических процессов металлургических, нефтехимических и других производств, где возможны неконтролируемые притоки и расходы текучих сред (атмосферного воздуха, пара и т.д.). Естественно, что сбалансированность материальных потоков должна обеспечиваться не только по компонентам, но и в целом по потокам ресурса между отдельными процессами. При таком условии становится, например, бессмысленным оптимальное управление каким-либо одним из процессов, входящих в технологических комплекс, приводящее, например, к повышению производительности этого процесса, если его производительность не сбалансирована с возможностями переработки или потребления в следующем по цепочке процессе. Возможно, что более разумным явится в таких условиях соблюдение баланса по потокам материального ресурса. Задача оптимального сбалансированного управления комплексом процессов может быть сформулирована так: найти оптимальную (например, по минимуму себестоимости) совокупность расходов ресурсов, обеспечивающую заданные уровни производительности каждого процесса, сбалансированные по всей цепочке технологических комплексов. Такая «технологическая» постановка, во всяком случае, больше отвечает принципам системности, чем традиционная, целью которой является максимизация или минимизация какого-либо показателя технологического процесса (производительности, например); в традиционной постановке нарушения сбалансированности материальных потоков естественны. Необходимо, конечно, отметить, что в данном разделе изложены только наиболее существенные, с точки зрения автора, особенности осуществления технологических процессов. Существуют также другие различные особенности в тенденции, уже упоминавшиеся в разделе 2.1.1. * Среди различных тенденций развития технологических процессов материального производства мы должны отметить одну из наиболее существенных. Это тенденция к созданию малооперационных и малостадийных технологических процессов, приходящая на смену традиционным способам разделения процесса труда, выделения, механизации и автоматизации отдельных операций [6]. В черной металлургии – это процессы прямого восстановления железа, минуя доменный процесс, в цветной металлургии – автогенные процессы, плавка в жидкой ванне, в угольной промышленности – гидродобыча угля, в легкой промышленности – технология производства нетканных материалов и т.д. * Эти и другие тенденции реализуются тремя основными принципами развития современных технологических процессов [7]: 1) Развитие и совершенствование методов ведения классической технологии. Содержание – «улучшение известной продукции, известного процесса». 2) Поиск новых, прогрессивных технологических процессов для выпуска прежней продукции. Содержание – «улучшение известной продукции, применение нового процесса». 3) Создание новых технологических процессов в связи с появлением новых видов продукции. Содержание – «выпуск новой продукции, применение нового процесса». Технологические структуры * Проанализируем технологические структуры, во-первых, как системные структуры, во-вторых, как структуры, создаваемые для обеспечения хода технологического процесса. Как системная структура, технологическая структура – это множество взаимодействующих элементов (элементов технологической структуры) и элементов взаимодействия между ними. В предыдущем разделе мы определили с системных позиций технологический процесс, а также элементарные процессы переработки и взаимодействия. * Элемент технологической структуры обеспечивает реализацию элементарного процесса переработки, т.е. элементарного процесса изменения свойств, формы, состояния предмета труда. Одни элементарные процессы реализуются вручную людьми (например, присоединение элементов электрических схем прибора путем пайки, установка и крепление резьбовыми соединениями деталей приборов, машин, аппаратов), другие – людьми с помощью механизмов, роботов, автоматов (например, автоматизированная сборка механических часов, механическая обработка деталей на станках с ЧПУ), третьи осуществляются в аппаратах, машинах, агрегатах без непосредственного воздействия человека на предмет труда (обогащение руд цветных металлов во флотомашинах, крашение тканей в красильных аппаратах, получение серной кислоты в контактных аппаратах, жидкостная обработка кож в деревянных барабанах). Таким образом, возможны три вида элементов технологических систем: «человек», «человек-машина», «машина». Заметим, что управление этими процессами также может осуществляться человеком, машиной, либо человеко-машиной системой. * Элементы взаимодействия обеспечивают взаимодействие между элементами технологической структуры, т.е. обеспечивают выполнение комплекса операций складирования и транспортирования перерабатываемого материального ресурса. Основным требованием к элементам взаимодействия технологических структур – технологическому транспорту и складам – является требование обеспечения неизменности свойств, формы, состояния предмета труда в процессе транспортирования и складирования. Кроме того, добавляются и другие требования, например, обеспечение сохранности количеств транспортируемых и складируемых материальных ресурсов и др. Транспорт и склад, как часть технологической структуры, должны обеспечивать пространственно-временное взаимодействие элементарных процессов в технологической системе. Все эти требования накладывают жесткие ограничения на совместное функционирование элементов взаимодействия технологических структур и элементов технологических структур. * Технологическая структура создается, в первую очередь, для обеспечения заданного хода технологического процесса, как процесса достижения цели. Анализ этого аспекта технологических структур касается, в частности аппаратурного воплощения элементов технологических структур (систем), их конструктивных особенностей. Эти вопросы выходят за рамки настоящей работы. Мы проанализируем некоторые аспекты, общие для всех технологических структур. Технологические структуры должны быть однозначными, т.е. должны однозначно обеспечивать заданное течение технологического процесса. Однозначность структуры технологической системы означает обеспечение целенаправленных преобразований и пространственных перемещений перерабатываемого ресурса без отклонений от заданной схемы. * В тоже время важной особенностью технологических структур является гибкость, способность перестраиваться при введении каких-либо изменений в регламент технологического процесса. * Одной из существенных особенностей технологических структур является применениетиповых,унифицированных, стандартизированных конструкций машин, аппаратов, приборов, агрегатов. Применяемые в современных технологических структурах машины, аппараты, агрегаты для реализации процессов переработки, а также транспорт и склады должны в максимальной степени быть построены на типовых решениях. * Важным требованием к элементам технологических структур является необходимость оснащения контрольно-измерительной аппаратурой, средствами автоматического контроля и управления. * Элементы технологических структур и по производительности и по объемам перерабатываемых потоков должны быть сбалансированы — это одно из условий, предупреждающих появление так называемых "узких " мест. * Совершенно необходимым является выполнение требований, связанных со способностью машин, аппаратов, агрегатов, транспорта, складов обеспечивать минимум потерь материальных ресурсов при переработке, складировании, транспортировании. Это требование, наряду с целями экономии ресурсов, преследует цели исключения загрязнения окружающей среды. * Тенденции развития технологических структур можно так же, как и для процессов [7], свести к трем основным: 1) развитие и совершенствование технологических структур и их элементов для классической технологии. Содержание – «улучшение известного процесса, улучшение известной структуры». 2) поиск новых, прогрессивных вариантов технологических структур, конструкций их элементов для реализации классической технологии. Содержание – «улучшение известного процесса, применение новой структуры». 3) создание новых технологических структур для реализации нового технологического процесса. Содержание – «применение нового процесса, реализация новой структуры». Технологические системы * Модель технологической системы состоит из следующих множеств.Первое – множество технологических элементов системы, т.е. людей, машин, аппаратов, агрегатов, станков и т.п., которые осуществляют элементарные процессы целенаправленного преобразования предмета труда. Второе – множество элементов взаимодействия, т.е. машин, аппаратов, оборудования и механизмов транспорта и складов, которые обеспечивают взаимодействия технологических элементов. Третье – множество элементарных процессов целенаправленного преобразования, на каждом из которых происходят изменения свойств, формы, состояния перерабатываемого предмета труда. Четвертое – множество элементарных процессов транспортирования и складирования, характеризующих динамику пространственно-временных перемещений предмета труда между элементарными процессами переработки. * Процесс технологической системы — это множество элементарных процессов переработки, транспортирования и складирования. * Структура технологической системы — это множество людей, технологического, транспортного и складского оборудования, машин, агрегатов, аппаратов. * Основная технологическая система включает в себя множества технологических элементов системы и взаимодействий между ними. Система, дополнительная к основной технологической, это система, включающая в себя множество транспортного и складского оборудования (машин, агрегатов, механизмов и т.п.) и элементарные процессы технологической переработки, причем эти процессы рассматриваются здесь, только как процессы, обеспечивающие взаимодействие между элементами множества транспортного и складского оборудования машин и др. * При рассмотрении общей задачи создания и развития полной технологической системы целесообразно разделить ее на две группы задач, связанных в системном плане: задачи основной технологической и дополнительной транспортно-складской систем. Порядок решения задач зависит от многих причин, они могут решаться последовательно, параллельно, либо может существовать более сложный циклический порядок. Естественно, что модели элементов полной технологической системы будут различными, в зависимости от того, какую группу задач мы рассматриваем. Модели элементов и процессов, которые ими осуществляются, будут зависеть от того, в рамках какой системы мы их рассматриваем: основной или дополнительной. * Технологическая система, создаваемая для изготовления определенного изделия, входит в некоторый технологический комплекс, включающий кроме нее, вспомогательные технологические системы. Такими системами являются, например, системы энергообеспечения, системы ремонта и восстановления оборудования, системы приготовления, дозирования и раздачи химикатов и красителей и другие. Развитие технологических систем можно описать в виде основных тенденций для технологических процессов и структур с наложением условия сбалансированного развития основной технологической и дополнительной транспортно-складской систем. Кроме того, одной из основных тенденций развития технологических систем является тенденция к снижению удельного веса транспортно – складской системы, к созданию непрерывных систем с минимальными затратами времени и средств на переход от операции к операции. Сложность задач управления современными технологическими системами приводит к необходимости создания сложных систем управления для них и одной из тенденций развития технологических систем является тенденция к созданию автоматизированных технологических комплексов, объединяющих технологическую систему и автоматизированную систему управления технологией. Системы, в том числе технологические, создаются для достижения определенных целей, которые могут достигаться процессами или структурами систем. * В связи с этим можно качественно обобщить основные тенденции развития технологической системы, создаваемой для реализации технологического процесса, следующим образом: 1) Улучшение технологических систем и их элементов для реализации известных целей. Содержание – «улучшение известных системдляизвестныхцелей». 2) Улучшение технологических систем и их элементов для реализации качественно новых целей. Содержание – «улучшение известных систем для новых целей». 3) Создание новых технологических систем и их элементов для реализации качественно новых целей. Содержание – «создание новых систем для новых целей». * Управление развитиемтехнологических систем должно включать две основные группы задач: 1) Управление проектами создания новых систем и их построение в рамках одной из этих тенденций развития. 2) Управление проектами реструктуризации имеющихся систем и поддержание их в конкурентоспособном состоянии. * В управлении проектамитехнологических систем, можно выделить три основных этапа: а) определение элементов полной технологической системы, которая состоит из множества взаимодействующих элементов, элементарных процессов переработки, элементов взаимодействия и элементарных взаимодействий. б) проектирование и конструирование основной технологической системы, которая представляет собой множество технологических элементов системы и элементов взаимодействия между ними. На этом этапе наряду с решением комплекса других вопросов, связанных с реализацией процесса и структуры системы, должны быть поставлены требования к функционированию транспорта и складов. в) проектирование и конструирование транспортно-складской системы. Ее элементами являются транспортные и складские единицы, а также элементарные процессы переработки. Основным содержанием этого этапа является решение всего комплекса вопросов по созданию транспортных и складских элементов системы, причем элементы основной структуры здесь могут рассматриваться только как создающие определенные временные задержки и формирующие те характеристики предмета труда, которые представляют интерес с точки зрения транспортировки и складирования. Этот подход заключается в поочередном рассмотрении элементов основной (перерабатывающей) и дополнительной (транспортно-складской) систем, причем, если проектируется одна из них, то другая система учитывается набором устанавливаемых ограничений на функционирование ее элементов. В отличие от подходов, при которых делается попытка объять всю проектируемую технологическую систему сразу, рассматриваемый подход позволяет достаточно полно учесть все аспекты создания полной технологической системы, для чего поочередно акцентируется внимание специалиста по управлению проектом на двух одинаково важных системах: собственно технологической (перерабатывающей) и транспортно-складской. Необходимо заметить, что транспорт и склад, как компоненты технологических структур во многих случаях в недостаточной мере удовлетворяют современным требованиям именно в силу того, что зачастую их проектирование является второстепенной задачей. Проведенный анализ выявил ряд важнейших особенностей осуществления технологий, которые в последующих разделах используются для формулирования моделей и принципов построения технологических систем. 2.2. Принципы технологизации * Принципы системной технологии представляют собой наиболее важные необходимые условия осуществления технологических систем в любой сфере человеческой деятельности. Эти условия являются вербальными моделями технологизации систем, их структур и процессов. В комплексе с уже упоминавшимся классическими принципами непрерывности, параллельности и др. предложенные автором принципы – основа для практического применения Закона технологизации и Закона системности, обоснованных и сформулированных в главе 1, и для формальной оценки соответствия модели системы эталону технологической системы, напр., при проектировании или исследовании систем. Так как системная технология представляет собой эмпирическую науку, то сформулированный ниже комплекс принципов допускает трансформацию и трансфиницию на пути построения системы аксиом технологий, удовлетворяющей требованиям непротиворечивости, независимости, истинности, интерпретируемости, полноты, замкнутости и др. * Принцип однозначного соответствия «цель – процесс – структура»: В технологической системе для достижения цели изготовления каждого изделия должен реализовываться строго соответствующий ему процесс, осуществляемый с помощью четко определенной структуры; технологическая система описывается множеством таких соответствий, как предусмотренных при ее создании, так и возникших в процессе развития. Однозначное соответствие представляет собой одну из вербальных моделей общей системы для представления триады «изделие – процесс системы – структура системы» в соответствии с принципом системности. В промышленных технологических системах применение другой структуры вместо «положенной» для изготовления данного изделия может приводить к аварийным или к трудно исправимым ситуациям. Стремление соблюдать соответствие вариантов изделий вариантам структур и вариантам процессов – обязательное условие осуществимости промышленных технологических систем и обеспечения параметров выходной продукции. Стремление к использованию одной и той же структуры для осуществления одних и тех же процессов характерно, например, и для организационных систем управления. Для промышленной технологической системы причину брака продукции, произошедшего из-за нарушений структуры системы, сразу же можно выявить. В свою очередь, для управленческой системы причины брака в управленческих решениях, произошедшего из-за нарушения принятой структуры или процесса принятия решений, не всегда даже и анализируются в истинном направлении. В системной технологии принцип однозначного соответствия «цель – структура – процесс» может контролироваться двумя способами: контроль процесса и структуры и контроль достижения цели (контроль выходной продукции). Во всех технологических системах можно применять оба этих способа. * Принцип гибкости: технологическая система должна уметь оперативно перестраиваться, т.е. при необходимости переходить с одного соответствия «цель – процесс – структура» на другое с минимальными затратами ресурсов. Гибкость является одним из проявлений универсальности действия принципа системности при изменении целей внешней среды, для достижения которых среда создала технологическую систему. В любой технологии такие ситуации возникают при изменении ассортимента или требований к количеству, свойствам, форме, состоянию выходного продукта. Такие изменения происходят довольно часто в спросе на продукцию системы образования и образовательные технологии должны быть для этого гибкими, способными перестраиваться на выпуск новых специалистов в соответствии с требованиями рынка. Происходят изменения и в спросе на услуги коммуникационных систем. По этой причине и коммуникационные технологии должны удовлетворять принципу гибкости, Это условие относится и к аграрным технологиям и, вообще, ко всем технологическим системам. В современных условиях гибкость технологических систем – одно из обязательных условий их соответствия требованиям рыночной экономики. Технологические системы, удовлетворяющие этому принципу, с меньшими затратами переносят, напр., условия конверсии оборонных отраслей общественного производства, освоение новых видов продукции, создание «двойных технологий», изменения форм собственности. * Принцип неухудшающего взаимодействия: транспортно-складские взаимодействия внутри систем и между системами во времени и в пространстве не должны ухудшать параметры ресурсов и изделий или могут ухудшать их в заданных пределах. Этот принцип отражает требования к машинизации транспортных и складских процессов взаимодействий во времени и в пространстве. Склады (овощехранилища, склады для деталей машин, информационные базы и банки данных и т.д.) и транспорт (грузовые поезда и самолеты, линии связи и т.д.) должны обеспечивать постоянство параметров складируемых и транспортируемых ресурсов между процессами их целенаправленной переработки или допускать их ухудшение в заданных пределах. Для соблюдения этого принципа должны использоваться процедуры создания и эксплуатации систем, придающие одинаковую важность, как процессам целенаправленного преобразования ресурсов, так и процессам транспортирования и складирования. Системная технология предлагает модели технологических систем, в которых система взаимодействий и ее элементы, структуры и процессы описываются с такой же полнотой, как и «основная» преобразующая система и ее элементы, структуры и процессы. * Принцип технологической дисциплины: во-первых, должен иметь место регламент функционирования технологической системы для каждого соответствия «цель – процесс – структура», во-вторых, должен осуществляться контроль над соблюдением технологического регламента и, в-третьих, должна существовать система внесения изменений в технологический регламент. Технологическая дисциплина – это проявление совместного действия Закона системности и Закона технологизации. Регламент – это та модель общей системы, которая детализирует однозначное соответствие «цель – процесс – структура» в каждом отдельном случае, с одной стороны. С другой стороны, регламент – это то, что определяет основные отличия между творческим и технологизированым процессами общественного производства. В понятие технологической дисциплины должно входить и соблюдение установленного регламента на взаимодействие с внешней средой системы – поставщиками и потребителями всех видов ресурсов: информационных, материальных, энергетических, природных и др. Особое значение имеет, как известно, регламент на взаимодействие с природной средой, как одной из важнейших систем внешней (по отношению к конкретной технологической системе) среды. В современных условиях, когда построение технологий распространилось на все сферы общественного производства, технологическая дисциплина – одно из важнейших условий их нормального функционирования. *Принцип обогащения: каждый элемент технологической системы (как и вся система) должен придавать новые полезные свойства (и/или форму и/или состояние) преобразуемому ресурсу (предмету труда) для обеспечения процесса изготовления системой заданного изделия. Принцип обогащения полезными свойствами, формой, состоянием – это проявление Закона технологизации, отражающее способ сведения исходной невыполнимой задачи изготовления изделия «за один раз» к реализуемой задаче изготовления изделия с помощью комплекса «элементарных» процессов. Принцип обогащения отражает также необходимость преобразования исходной цели изготовления всего изделия в систему элементарных целей; достижение каждой из этих целей обеспечивается элементарным процессом изготовления «части» свойства и/или формы и/или состояния изделия. Исходное соответствие «цель-процесс-структура» превращается, в силу действия принципа обогащения, в систему соответствий «цель системы-элементарная цель-элементарный процесс-элементарная структура». Уже отмечалось, что в промышленных технологиях при прохождении через стадии, циклы и операции технологических процессов, преобразуемые ресурсы теряют «ненужные» и приобретают «нужные», заданные качества. По всей видимости, обязательна такая постановка и для любой системной технологии, например, для процессов переработки информации в системах управления, когда после каждого подпроцесса информация должна обогащаться новыми свойствами, формой, состоянием: приобретать более удобную форму для последующего восприятия, освобождаться от помех, становиться более пригодной для последующих этапов принятий решений, быть более пригодной для практического использования в общественном производстве и т.д. Эффективно применение принципа обогащения для системной технологии решения математических задач большой размерности. В этом случае в процедуру решения должен вводиться этап обогащения исходного числового массива, после которого из числового массива выделяется элементы, по какому-либо признаку могущие участвовать в оптимальном решении. Остальные элементы массива в дальнейших процедурах решения не участвуют. Применение такого этапа обогащения позволяет, например, существенно улучшить результаты решения некоторых задач дискретной оптимизации (глава 9). Построение системных технологий для любой сферы деятельности в первую очередь должно быть основано на возможности практически реализовать принцип обогащения. * Принцип оценки качества: Является обязательным установление критериев и оценка по ним качества реализации каждого соответствия «цель – процесс – структура» как для технологической системы в целом, так и для всех ее элементов; оценка качества может проводиться для изделий системы и изделий ее подсистем, для процессов системы в целом и процессов ее подсистем, для структур системы в целом и структур ее подсистем. Необходимость оценки качества отражает действие Закона системности. Действительно, каждая технологическая система функционирует в условиях влияния внешней среды, метасистем и макросистем и влияния «внутренней среды» элементов системы. По этой причине необходима постоянная корректировка системы, ее процессов и структур для обеспечения достижения заданного результата. При функционировании технологических систем естественны неконтролируемые изменения свойств, формы, состояния преобразуемого ресурса вследствие неполного знания физико-химических, социальных, экономических, природных и др. процессов во внешней и внутренней среде системы и вследствие невозможности полностью предвидеть и устранить нежелательные влияния этих сред. Создание системной технологии переработки любых видов ресурсов должно включать и реализацию принципа оценки качества. * Принцип технологичности: из всех видов изделий, отвечающих поставленной цели, должно выбираться наиболее «технологичное», т.е. обеспечивающее наиболее эффективную реализацию соответствия «цель-процесс-структура» в данной технологической системе. Принцип технологичности отражает совместное действие Законов системности и технологизации. Изделие в смысле выполнения требования технологичности, выполняет двоякую роль. Во-первых, изделие необходимо внешней среде для достижения определенных целей и поэтому метасистема внешней среды предъявляет к изделию свои требования. Во-вторых, изделие необходимо технологической системе для «зарабатывания» средств жизнеобеспечения, для получения прибыли, и технологическая система предъявляет к изделию требования, которые могут существенно отличаться от требований внешней среды потребления. Требование технологичности – своего рода компромисс между возможностями технологий и потребностями внешней среды. Оно заставляет проводить технологизацию с учетом потенциальных запросов внешней среды, с одной стороны, и побуждает внешнюю среду считаться с реальными возможностями технологий. Так, цели создания высококачественных генераторов сигналов низкой частоты могут отвечать несколько разных опытных образцов генераторов. Естественно, что при сравнении и выборе для серийного выпуска на каком-либо предприятии вопросы технологичности конструкции генератора будут учитываться, как один из важнейших. Для промышленной технологии требование технологичности – одно из основных, устанавливаемых международными стандартами и стандартами стран. Для учета требований технологичности системная технология предлагает использование моделей взаимодействия внутри технологических систем и между технологическими системами и внешней средой. * Принцип типизации: многообразие соответствий «цель-процесс-структура» в технологической системе и многообразие изделий, технологических процессов, структур и систем должны быть сведены в технологических комплексах к ограниченному числу типовых, обоснованно отличающихся друг от друга. Типизация отражает стремление к практике «экономной реализации» Закона технологизации при проектировании и осуществлении технологий. Принцип типизации приводит к созданию типовых изделий, типовых систем, типовых процессов, типовых структур. Этот принцип широко используется в самых разных отраслях народного хозяйства. Высшая форма типизации – стандартизация. Системная технология практически постоянно использует принцип типизации, пытаясь создать типовые, по сути, методы, способы, модели и условия осуществления технологий во всех сферах человеческой деятельности. * Принцип стабилизации: необходимо находить и обеспечивать стабильность таких режимов всех процессов и таких состояний всех структур технологической системы, которые обеспечивают наиболее эффективное использование преобразуемых ресурсов для качественного изготовления каждого изделия системы. Требование стабилизации отражает стремление к «экономной реализации» Закона технологизации при проектировании и осуществлении технологий, так же, как и предыдущее требование типизации. При создании промышленных технологических систем рассчитывается оптимальный режим функционирования машин, аппаратов, транспорта, складов; задачей управления в этом случае является стабилизация процесса в известных оптимальных режимах. Кроме того, в связи с влиянием среды и нестабильностью характеристик машин и аппаратов во времени по мере необходимости с помощью соответствующих моделей значения оптимальных режимов в ходе процесса корректируются и для стабилизации устанавливаются новые значения режимных параметров. Системная технология применяет этот подход к созданию технологических процессов преобразования любых других видов ресурсов, например, информации. * Принцип высвобождения человека: за счет реализации технологических систем машинами механизмами, роботами, автоматами высвобождать человека для интеллектуальной деятельности. Этот принцип отражает такие тенденции машинизации, как механизация, автоматизация и роботизация технологий, позволяющие, по замыслу, реализовывать любые технологические операции без участия человека и превращать труд человека, связанный с конкретным производством, в труд координатора технологической системы во взаимоотношениях с другими системами. Этот принцип, широко применяемый в промышленной технологии, на транспорте, складском хозяйстве, не требует особых пояснений в отношении традиционных областей применения. Существуют предпосылки и к тому, что все большее число «интеллектуальных технологий» может реализовываться без участия человека с помощью интеллектуальных компьютерных систем. Использование этого принципа при построении системных технологий предъявляет высокие требования к качеству машинизации элементов и подсистем создаваемых технологических систем. * Принцип преемственности: изделия каждой технологической системы должны обязательно потребляться внешней средой с такой же скоростью, с которой они производятся. Этот принцип отражает действие Закона системности. В самом деле, технологическая система производит свои изделия в соответствии с «заказом» внешней среды, которой они нужны для достижения своих целей и по этой причине внешняя среда должна «заботиться» о более полном и постоянном удовлетворении своих потребностей. Но потребности внешней среды постоянно изменяются, во-первых, во-вторых, постоянно возникают конкурирующие технологические системы. В силу этих обстоятельств технологическая система должна постоянно заботиться о реализации принципа преемственности и со своей стороны путем, например, постоянного маркетинга и улучшения своих процессов и качества изделий. Технологическая система должна заботиться об осуществлении «динамического баланса» с ее внешней средой. При возможностях масштабной координации могут устанавливаться «цепочки» технологических систем крупной фирмы и обеспечиваться динамический баланс систем этой цепочки. Этот принцип не всегда выполняется в технологических звеньях систем управления; известно, что продукция отдельных звеньев управления не всегда подвергается целенаправленной дальнейшей обработке в других звеньях управления. Происходит это, в основном, по той причине, что к учету затрат на каждый вид этой продукции относятся не так серьезно, как к учету затрат на кефир, мясо, компьютеры или на другую продукцию, которая производится в основном производстве. Хотя на звенья управления производятся немалые затраты и к ним имеет смысл относиться также, как к технологиям. При применении метода системной технологии важно применение всех ее принципов осуществления технологий и, в особенности, принципа преемственности, который наиболее четко отражает необходимость единообразного подхода к созданию динамического баланса системы с внешней средой. По этой причине принцип преемственности можно назвать принципом динамического баланса. * Принцип баланса: суммарное количество каждого известного компонента любого ресурса, потребляемого технологической системой за определенное время, должно быть равно суммарному количеству этого компонента, поступающего за это же время от технологической системы во внешнюю среду. Это относится к технологической системе в целом, ее частям и элементам. Выполнение этого требования устанавливает статический баланс системы и ее частей с внешней средой системы и ее частей,что нужно для учета всех маршрутов преобразования и направлений расходования ресурсов и усилий на их создание и переработку. * Принцип экологичности: воздействие технологических, социальных и природных систем друг на друга должно приводить к устойчивому прогрессивному развитию каждого вида этих систем и их совокупности. Требование экологичности отражает действие Закона системности. Социальные системы (система-субъект) создают технологические системы (система-объект) для преобразования ресурсов природных систем в целях своего выживания и развития (система-результат). На современном этапе развития взаимодействия этой триады систем необходимо, в целях выживания и развития всей триады систем и каждого вида систем, создавать такие технологии воздействия, которые должны восполнять и развивать ресурсы природных систем и создавать условия выживания и прогрессивного развития всей триады систем и каждой системы. Другими словами, воздействия технологической системы на природную и социальную среды не должны ухудшать результаты жизнедеятельности этих сред или должны ухудшать их в заданных пределах; взаимодействие технологической, социальной и природной сред должно приводить к сбалансированному прогрессивному развитию этих сред и их компонент; воздействие технологической системы на окружающую среду (совокупность социальной, производственной и природной сред) должно приводить к сбалансированному прогрессивному развитию окружающей среды; технологическая система должна способствовать прогрессивному развитию общей системы, в которую входит сама технологическая система и взаимодействующие с ней части природной, социальной и производственной (экономической) систем; регресс этих систем должен происходить в заданных пределах, обоснованных из расчета возможностей самоочищения (способности к самовосстановлению) общей системы и ее частей. Воздействие социальных, технологических и природных систем друг на друга пока что приводит в большинстве случаев к их регрессивному развитию. Примером тому являются устойчивое регрессивное развитие Аральского моря, Чернобыльская катастрофа, подъем уровня Каспийского моря. Системная технология должна реализовываться таким образом, чтобы обеспечить восстановление, стабилизацию и устойчивое прогрессивное развитие всех компонентов экосистемы. Экосистема, в данном случае, содержит технологическую, социальную и природную системы (имеются в виду их взаимодействующие между собой части). Модель экосистемы, как модель общей системы для этой триады, должна содержать в себе модель устойчивого прогрессивного развития компонент экосистемы. * Принцип согласованного развития: развитие системы и ее компонент (элементов, структур, процессов) должно соответствовать эволюции целей внешней среды, для достижения которых нужны изделия системы; развитие систем должно основываться на управлении проектами систем. Принцип согласованного развития отражает совместное действие Законов системности и технологизации, обуславливая необходимость взаимодействия с внешней средой в рамках изменений модели метасистемы и необходимость развития технологий самой системы. Этот принцип содержит следующие правила развития систем: а) улучшение известных систем для известных целей; б) улучшение известных систем для новых целей; в) создание новых систем для новых целей. Они основаны на уже упоминавшихся известных [7] правилах: а) развитие и совершенствование методов ведения классической технологии; содержание – «улучшение известной продукции, известного процесса»; б) поиск новых прогрессивных технологических процессов для выпуска прежней продукции; содержание – «улучшение известной продукции, применение нового процесса»; в) создание новых технологических процессов в связи с появлением новых видов продукции; содержание – «выпуск новой продукции, применение нового процесса». Существует ряд известных особенностей и тенденций развития технологий, которые легко описываются в рамках предложенных принципов системной технологии: создание малооперационных технологий; повышение съема продукции с каждой единицы площади или объема технологического оборудования; увеличение интенсивности технологических процессов; снижение материалоемкости (металлоемкости, в частности); снижение трудозатрат, увеличение мощности аппаратов; совмещение процессов и др. Эти и другие тенденции развития технологических систем описываются в системной технологии с единых позиций на основе принципа согласованного развития систем, процессов, структур. * Принципы системной технологии в комплексе с классическими принципами непрерывности, параллельности, ритмичности и пропорциональности, а также кооперации, специализации и концентрации производства – основа для качественной оценки соответствия модели системы эталону технологической системы и для дальнейшего решения задач системной технологии. Надо отметить, что разработка новых принципов системной технологии должна продолжаться по мере появления новых технологий. Так, целесообразна разработка «принципа резонанса», основанного на явлении резонанса, известном и используемом в электромагнитных и электронных системах, а также, в последнее время, и в создании технологических машин и оборудования, при изучении свойств воды, биологических структур и технологий. Вполне обоснованно можно предположить, что подобный принцип может быть использован для повышения эффективности информационных технологий с применением методов и моделей информационного подхода [18]. * Дальнейшее развитие этого раздела системной технологии должно предусматривать решение следующих проблем: 1. разработка принципов системного изделия; 2. формальное математическое описание каждого из принципов; видимо, каждый из принципов должен содержать основную теорему, устанавливающую истинность некоторой формулы прикладного исчисления предикатов (главных или дополнительных), записанной в пренексном виде; кроме этого, каждый из принципов может содержать некоторую формальную процедуру его применения; 3. составление формальной схемы применения комплекса принципов системной технологии для различных классов систем; 4. дополнение принципов системной технологии. В данном разделе впервые сформулирован комплекс принципов осуществления системных технологий, отражающий объективное действие Законов системности и технологизации при построении и реализации технологических систем в любой сфере человеческой деятельности. Глава 3. Системы 3.1. Особенности моделирования систем Мы рассматриваем в данном разделе особенности моделирования систем и общих систем с позиций системной технологии. Мы исходим из общепринятого определения: «Модель – вспомогательный объект (или система), заменяющий изучаемый объект, представленный в наиболее общем виде» [8]. * В силу действия Закона системности общая система – это система, «в рамках» которой осуществляется функционирование триады систем «объект-субъект-результат»; модель этой системы логично использовать в качестве модели общей системы для триады систем, рассматриваемой с позиций принципа системности. Составление модели этой системы, как правило, в точном виде невозможно и по этой причине необходимо знать общие особенности моделирования систем, что в принципе позволяет избежать больших погрешностей при применении известных математических моделей. Особенности функционирования систем, рассматриваемых с позиций принципа системности и цели, которые мы преследуем при этом, могут приводить к самым различным моделям систем: иерархическим, дифференциальным, алгебраическим, имитационным и другим. Для целей системной технологии определяющим являются те особенности моделирования с использованием известных и новых математических моделей, применение которых позволяет наиболее эффективно использовать принципы системности и осуществления технологий, отражающие объективное действие фундаментальных Законов системности и технологизации. Универсальная модель общей системы изложена, как уже отмечалось ранее, в разделе 3.3. Описываемые здесь особенности моделирования систем могут быть реализованы при моделировании систем на основе универсальной модели. * Понятия, отражающие системный характер объекта исследования, использовались в трудах многих выдающихся ученых. Идеи, которые можно было бы положить в основу теории систем, излагались в работах Гегеля. Они сводятся к следующим общеизвестным теперь положениям: «целое больше суммы частей; целое определяет суть частей; части познаются только при рассмотрении в составе целого; части взаимосвязаны и взаимозависимы». Существенный вклад в формирование понятий системности внесли К.Маркс, Ф.Энгельс, В.Ленин [9,10]. Исторически первым вариантом общей теории систем явилась тектология А. А. Богданова [11], ей предшествовали труды A.M. Бутлерова, Д.И. Менделеева, Н. Белова, Е.С. Федорова. В 30-х годах английский эколог А. Тэнсли предложил термин «экосистема» [12]. С концепцией «общей теории систем» выступил австрийский биолог Людвиг фон Берталанфи [13]. Резко стимулировало развитие системных исследований создание кибернетики Н. Винером [14], так как одним из основных ее объектов исследования стали системы различной природы, как объекты управления. Системной, по своей сути, является концепция ноосферы В.И.Вернадского [15,16]. * Положения системологии справедливо подвергаются критическим и скептическим оценкам из-за неконкретности, малой эффективности системных исследований. Самой актуальной задачей системологии является разработка таких методов моделирования и реализации систем, которые можно эффективно применять на практике. На эти вопросы в отношении своего круга проблем отвечает системная технология. * Значение системной методологии объясняется, как известно, тремя основными причинами. Во-первых, большинство традиционных научных дисциплин – биология, психология, экология, лингвистика, математика, социология, и др., дополнили объекты своего рассмотрения моделями систем. Во-вторых, технический прогресс привел к тому, что объектами проектирования, конструирования и производства оказались большие и сложные системы. Поэтому возник комплекс новых дисциплин, таких, как кибернетика, информатика, бионика и др., одна из основных задач которых – моделирование систем. Наконец, в-третьих, появление в науке, технике и производстве проблем исследования, проектирования и реализации систем повысило методологическую роль системных исследований. Системная технология превращает системную методологию в совокупность наглядных приемов и моделей. * Термин «система» охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система. Человеческий организм включает опорно-двигательную, сердечно-сосудистую, нервную, лимфатическую и другие системы. Мы ежедневно сталкиваемся с системами транспорта и связи (телефон, телеграф и т.д.) и экономическими системами. Исаак Ньютон назвал «системой мира» предмет своих исследований. Модель системы понимается и как план, метод, порядок, устройство, Поэтому и неудивительно, что этот термин получил среди ученых, конструкторов, производственников и др. специалистов такое распространение. Системная технология предлагает спектр моделей для описания структур и процессов систем, а также для описания их взаимодействий с внешними средами системы и элементов системы и с внутренними средами системы и элементов системы. * Наибольший интерес вызывают модели большой и сложной систем. С позиций системной технологии, объективно существующие системы не являются большими, малыми, сложными или простыми. Таковыми они становятся с позиций субъекта деятельности при их моделировании в силу действия реальных соотношений познавательных намерений человека с его возможностями моделирования исследуемых систем. Модель системы необходима, чтобы точно описать структуру и процесс системы, а также определить по модели параметры и характеристики системы при допустимых затратах ресурсов (затраты человеческого ресурса на исследование системы по данной модели, время расчетов, ресурс компьютерного обеспечения и т.д.). С понятием приемлемой точности (или погрешности) моделирования, получаемой при допустимых затратах ресурсов, можно связать понятия большой и сложной систем, в т.ч. и технологических систем, рассматриваемых системной технологией. * В системной технологии принято считать, что основной аспект сложности моделей систем — это использование трудноразрешимых моделей для описания процессов и структур системы. Например, для составления план-графика производственного процесса могут быть предложены «точные» алгоритмы составления расписаний, для применения которых недостаточно ресурсов вычислительных машин, находящихся в распоряжении менеджеров предприятия. Традиционный путь разрешения противоречия – нахождение «простой» модели, которая позволит определить параметры и характеристики системы с приемлемой точностью при допустимых затратах ресурсов. При моделировании с помощью сложной модели часть системы может описываться графовыми или сетевыми моделями, другая – с помощью дифференциальных уравнений, для третьей используются вербальные модели и т.д. Это помогает находить приемлемые, с точки зрения точности, совокупности моделей для описания частей системы. Сложность системы для ее моделирования в рамках системной технологии заключается в том, что для составления модели сложной системы необходимо, как правило, использовать более чем две теории, более чем два языка описания системы ввиду качественного различия внутренней природы элементов системы между собой и наличия разных подходов к моделированию объектов различной природы. Сложными являются и основные объекты системной технологии — технологические системы, состоящие, как правило, из подсистем, имеющих различную физическую природу. Это довольно наглядно было показано в главе 2 на примере анализа разнообразных технологических систем. Наиболее общие особенности моделей технологических систем различной природы допускают пока только вербальное или приближенное математическое описание. * Основной аспект большой системы рассматривается, с позиций системной технологии, как необходимость привлечения большого объема ресурсов для управления процессами достижения цели в моделируемой системе. В большой системе нет сложных моделей элементов и подсистем, либо их проблемы уже представлены в приемлемом «простом» виде. Модель большой системы состоит, как правило, из совокупности моделей элементов и подсистем и моделей взаимосвязей между ними. Для большой системы, как правило, нет необходимости нахождения модели всей системы в виде, например, системы уравнений, связывающих между собой все преобразования, происходящие в системе. Большая система – это система, которая может рассматриваться только в качестве совокупности ее элементов и подсистем; подсистемы большой системы не являются сильно связанными между собой. Для модели большой системы предполагается, что заданное функционирование и взаимодействие элементов и подсистем приведет к ожидаемому результату функционирования всей системы. По этой причине управление большими системами предполагает наличие систем управления для каждого элемента и/или для каждой подсистемы большой системы (для некоторых элементов и подсистем могут реализовываться общие контуры управления). Именно по этой причине ресурсы, необходимые для осуществления собственно большой системы, сравнимы по размерам с ресурсами, необходимыми для управления этой большой системой. С позиций системной технологии большую систему, как и любую другую систему, можно рассмотреть в виде системы-объекта деятельности в триаде «объект, субъект, результат». Тогда можно сформулировать следующее определение: система-объект деятельности называется большой, если она состоит не менее, чем из трех подсистем и ее реализация предполагает сравнимые затраты ресурсов на ее построение и на построение системы-субъекта деятельности. * Для моделирования элементов системы будет полезен следующий пример [53]. В 1793 г., когда Э. Уитни сконструировал первую хлопкоуборочную машину, он столкнулся с двумя основными трудностями при организации их производства: производство было ремесленным, т.е. требовало привлечения высококвалифицированных ремесленников, умеющих изготовить изделие от начала до конца; именно в это время имело место массовое переселение ремесленников в числе других групп населения на запад США. В связи с этим Э. Уитни искал способы выпуска машин без ремесленников высокой квалификации. Для этого Э. Уитни ввел разделение труда, разбив весь процесс выпуска машины на отдельные операции, выполнявшиеся отдельными рабочими. Кроме этого, ему пришлось решить проблемы унификации и взаимозаменяемости узлов и деталей машины и ряд других. Таким образом, если до этого рабочие-ремесленники работали каждый отдельно, обособленно, то теперь они должны были действовать согласованно друг с другом. На этой основе он объединил рабочих в систему производства машин. На данном примере можно видеть, что функции рабочих, процессы, которые каждый из них осуществлял, становятся качественно другими при объединении их в технологическую систему производства. Элементы при превращении их в элемент системы качественно изменяются, между ними появляются взаимосвязи, что позволяет создать структуру системы. Элементарные процессы, осуществляемые отдельными элементами системы, взаимодействуют между собой и образуют процесс системы. В рассматриваемом примере процесс системы – это технологический процесс в производственной системе по выпуску хлопкоуборочных машин. Этот процесс уже не предъявляет к квалификации рабочего повышенные требования. Рабочий с «низкой» квалификацией, удовлетворяющей требованиям хотя бы одного элементарного процесса системы, может стать ее элементом, если он отвечает требованиям структуры, напр., по коммуникабельности. Модель элемента системы должна содержать, таким образом, описание элементарного процесса, который им должен осуществляться, и его структуры. Понятие модели структуры элемента мы связываем с упорядоченностью отношений, которые связывают «вход» элемента (т.е. ту его часть, на которую поступает ресурс для последующего преобразования элементарным процессом) с его «выходом" (т.е. с теми его частями, которые передают ресурс, преобразованный элементарным процессом, транспорту, складу или непосредственно следующему элементу системы). * Модель структуры системы однозначно задается описанием способов осуществления взаимодействия между элементами системы (реализации транспортно-складских операций, напр.). Системная технология использует следующие известные описания уровней этого взаимодействия: первый – нефункциональное взаимодействие, обусловленное природными явлениями или противоречивыми характеристиками; второй – симбиоз, выражается во взаимодействии, напр., между разными организмами, например, растением и паразитами; третий – синергестическая взаимосвязь, в рамках которой характеристики элементов взаимно усиливают друг друга и систему в целом. В технологических системах наблюдается синергестическое взаимодействие, так как в них наблюдается взаимное дополнение и усиление элементов. Как технологическая система без одного из ее элементов (если не предусмотрено специальное резервирование), так и любой из ее элементов вне технологической системы не могут выполнять своего назначения. * С позиций системной технологии обязательным компонентом модели системы должно являться описание ее границ с внешней средой и границ с внутренней средой ее элементов. Могут существовать как физические, так и концептуальные границы систем. Определение модели границ системы с ее внешней средой проведем следующим образом: если составить модели всех элементов системы и причинно-следственных отношений между ними, то все элементы, которые связаны причинно-следственными отношениями между собой, а также причинно-следственные отношения только между элементами системы входят в модель системы; те причинно-следственные отношения, которые связывают элементы системы с внешней средой системы, описывают границы системы. Если описать все причинно-следственные отношения, направленные к системе от внешней среды, то мы получим модель границы системы с внешней средой на ее входе; если описать все причинно-следственные отношения, направленные от системы к внешней среде, то мы получим модель границы системы с внешней средой на ее выходе. Определение модели границ системы с внутренней средой ее элементов проведем следующим образом. Если описать элемент системы, как систему (назовем ее микросистемой), то все микроэлементы (т.е. элементы микросистемы) и причинно-следственные отношения только между ними войдут в модель элемента, как микросистемы; два причинно-следственных отношения между элементом и системой (одно на его входе и другое на его выходе) составят модели его границ с системой на входе и выходе элемента; здесь надо иметь в виду, что эти причинно-следственные отношения между элементом и системой являются причинно-следственными отношениями этого элемента с двумя другими элементами этой системы. Другими словами, вся совокупность причинно-следственных отношений между элементами системы составит собой одновременно и основную, «формальную» часть модели границы системы с внутренней средой ее элементов. Под влиянием внутренней среды элемента или внешней среды системы могут появляться и «неформальные», т.е. заранее нерегламентированные отношения, которые составят «неформальную» часть модели границы системы с внутренней средой ее элементов. По этой причине необходимо при моделировании взаимодействий между элементами системы учитывать не только желаемые целесообразные, в смысле цели создания системы, взаимодействия между ними, но и те воздействия, которые могут «пойти» по каналам взаимодействия из внутренней среды ее элементов. В производственных системах такие воздействия могут происходить в результате взаимодействия внутренней среды микросистемы с внешней средой системы; это могут быть воздействия климата, социальной среды, городского транспорта, страховых компаний, профсоюза, семьи, магнитного поля Земли. * С помощью моделей систем описываются количественные и качественные характеристики (параметры) систем. Число характеристик, которые имеют значение для проектирования, построения, исследования и оценки функционирования системы может быть довольно значительно. Это, например, безопасность деятельности; точность функционирования; быстродействие; издержки; надежность, социальные аспекты. Набор характеристик может значительно меняться на разных фазах жизненного цикла системы. * Системная технология использует принцип иерархической организации или принцип интегративных уровней [12,17,18], в следующем виде: разные элементы системы и разные совокупности элементов системы (ее подсистемы), а также разные взаимодействия в системе имеют разные приоритеты в смысле влияния на построение и осуществление процесса и структуры системы в целом и ее частей. Так, президент фирмы имеет больший приоритет в принятии решений по оперативному управлению фирмой в целом, чем менеджеры по управлению кадрами и менеджеры по управлению финансами, которые, в свою очередь, имеют больший приоритет по принятию решений в своих сферах деятельности по сравнению с другими менеджерами; подразделения и предприятия фирмы имеют меньшие приоритеты в определении стратегии развития фирмы в целом, нежели совет директоров или правление фирмы и т.д.; взаимодействие президента фирмы с членами правления приводит, как правило, к более приоритетным решениям, нежели его взаимодействие со своим референтом. В моделях крупномасштабных проектов и программ, которые системная технология также рассматривает, как системы, результаты решения некоторых «ключевых» проблем могут оказать существенное влияние на возможность разрешения ряда других проблем, которые без этих результатов могут быть неразрешимы. Иерархическая организация модели системы отражается в ее многоуровневом графическом изображении: на более «высоком» уровне располагаются более «значимые», в смысле влияния на поведение или структуру системы, элементы. Кроме этого, в иерархических моделях, как правило, присутствуют подсистемы. Под подсистемой понимается совокупность элементов, осуществляющих определенную часть процесса системы, в осуществлении которой все другие элементы системы не могут участвовать в соответствии с замыслом построения модели. * Системная технология использует принцип «черного ящика», который утверждает, что для предсказания поведения системы (или ее подсистемы) не обязательно точно знать, как ее процесс и структура построены из элементарных процессов и структур [12]. Так, для моделирования физиологии клеток не обязательно исчерпывающим образом понимать ее биохимию, для описания динамики популяций животных не нужно фундаментальных знаний по физиологии, для моделирования поведения социальных систем не обязательны глубокие знания по психиатрии, для моделирования технических систем автоматического регулирования уровня жидкости не обязательны знания в области сопротивления материалов и т.д. Этот принцип широко применяется при моделировании больших систем на основе анализа характеристик входных и выходных потоков ресурсов, преобразуемых системой. * Системная технология уделяет большое внимание «неформальным» графическим и вербальным моделям. Вербальными моделями являются изложенные в главах 1, 2 принцип системности, Законы системности и технологизации, концепция и принципы системной технологии, описания особенностей построения технологических процессов, структур, систем. Графические модели позволяют наглядно изобразить в виде схем, графиков, других простых и сложных графических конструкций частные и общие качественные и количественные характеристики моделей систем. Неформальные модели являются, как правило, этапом, предшествующим построению формальных математических моделей системы. С помощью неформальных моделей системной технологии мы находим некоторую совокупность упрощений, абстракций и соотношений, к которым можно сводить все многообразие моделей технологий, прежде чем перейти к построению технологий для различных сфер деятельности человека. * Системная технология использует машинные модели двух видов: аналоговые и дискретные. Аналоговые модели – это, как правило, модели систем в виде обыкновенных дифференциальных уравнений и уравнений в частных производных, решаемые на аналоговых вычислительных машинах. Дискретные модели, т.е. модели с развитой системой логических переходов и условий, описываемой с помощью аппарата дискретной математики (теория алгоритмов, математическая логика, теория множеств, алгебраические системы и др.), решаются с помощью цифровых вычислительных машин. Существуют также модели систем, ориентированные на решение с помощью аналогово-цифровых комплексов. В болыпинстве случаев модели систем являются непрерывно-дискретными. * Для решения задач системной технологии эффективными являются имитирующие модели. Для этих моделей не ставится задача наибольшего соответствия структуры модели структуре моделируемой системы. Основная задача – наиболее достоверное воспроизведение реакции моделируемой системы на внешние, в том числе и на входные воздействия в виде изменений характеристик преобразуемого системой ресурса и воздействий внешней среды. Подбор совокупности операторов преобразования входной информации в выходную производится с помощью статистических математических методов. Модель системы структурируется в виде блоков в соответствии с достоверными представлениями о структуре системы. Каждый блок модели имитирует поведение определенной системы, являющейся подсистемой исследуемой системы. Имитирующие модели позволяют корректировать набор операторов преобразования в соответствии с текущим поведением моделируемой системы, создавать имитационные и деловые игры для принятия решений по проектированию, управлению, развитию, использованию систем, для образовательных целей. * Формальные математические модели, используемые системной технологией, в том числе и используемые для имитирующих моделей, могут быть дифференциальными (в форме дифференциальных уравнений), логическими (в форме уравнений математической логики), теоретико-множественными, алгебраическими (в форме алгебраических уравнений и систем), графовыми (в форме ориентированных и неориентированных графов), комбинаторными (в виде моделей размещения объектов в соответствии со специальными правилами), смешанными. Модели систем могут быть стохастическими и детерминированными, т.е. учитывающими (в первом случае) и не учитывающими (в другом случае) случайный характер изменений характеристик системы и преобразуемых ею ресурсов. * Системная технология оценивает осуществляемую системой деятельность на основе системы критериев, определяющих, насколько оказалось эффективным достижение цели, поставленной перед триадой «объект, субъект, результат», с помощью системы-результата, т.е. изделия. Эти критерии выдвигает внешняя среда или система-субъект деятельности. Модель системы также можно оценивать некоторой совокупностью критериев, которую выдвигает система-субъект деятельности, моделирующая систему-объект деятельности с целью управления, проектирования, исследования, принятия решений по развитию или с иной целью. Такими критериями могут быть [36] реалистичность (степень соответствия реальной системе), достоверность (степень точности предсказания поведения системы), общность (диапазон приложимости модели для описания систем разной природы), устойчивость (способность сохранять соответствие моделируемой системе при изменении воздействий внешней среды системы и внутренней среды элементов системы в диапазонах, соответствующих экстремальным условиям реальной жизнедеятельности системы), чувствительность (степень зависимости параметров модели от вариаций других параметров и от воздействий внешней среды). * Системная технология решает задачи построения модели системы в зависимости от того, что является «изготовителем» изделия системы: процесс системы или структура системы. В технологических системах изделие, продукт – это результат осуществления системного процесса целенаправленного преобразования ресурсов (материальных, информационных и др.), в экономических системах изделие системы – это определенный комплекс экономических показателей, являющийся результатом системных экономических процессов. Во многих других системах, являющихся основным объектом приложения системной технологии, изделие системы также является результатом системного процесса. Это, образно говоря, «системы-процессы». Напротив, в таких системах, как здания, мосты, конструкции аппаратов, машин, цель системы реализуется с помощью структуры, а процессы теплового и механического взаимодействия (между элементами зданий, например) являются сопутствующими и не необходимыми для реализации основного назначения этих систем в соответствии с замыслом их создания. В этих системах (можно назвать их «системы-структуры») изделием системы может являться: внешний облик (архитектурные комплексы), потребляемый внешней эстетической средой; надежность транспортного соединения двух участков дороги, подходящей с двух сторон к берегам реки (мост), потребителем которой является транспортные средства и пешеходы. Надо заметить, что системы-структуры – это, как правило, элементы и подсистемы больших и сложных стохастических систем. Так, архитектурное сооружение – часть системы «человек – архитектурный ансамбль»; процесс этой системы – это процесс удовлетворения эстетических потребностей человека; этот процесс «проходит по-разному» для каждого сочетания «новый человек – архитектурное сооружение»; формальной модели этого процесса не существует, как правило. Другой пример – «мост-транспорт (в т.ч. и пешеход)»; процесс этой системы может быть описан только статистическими методами; его конкретная реализация – это взаимодействие детерминированной структуры со случайным набором остальных элементов системы; другими словами, это системы со случайным набором элементов, поведение которых также носит вероятностный характер, Таких систем много – ракета «земля-воздух», транспортные сооружения и т.п. В реальности все системы имеют вероятностные компоненты процессов и/или структур. Вопрос только в том, можно ли обойтись без учета этого или нет, для того, чтобы построить модель системы с приемлемой для практики точностью. Для построения стохастических моделей систем используют специальные методы моделирования процессов и структур, основанные на аппарате теории вероятностей, математической статистики, теории размытых множеств. Здесь стохастические модели не рассматриваются, хотя предложенные модели системной технологии могут развиваться и в этом направлении. Таким образом, модели системы могут создаваться для моделирования системы в целом, либо процесса системы, либо структуры системы в зависимости от того, что обеспечивает достижение целей системы. * Системная технология предлагает моделирование жизненного цикла системы. Рассмотрим модель жизненного цикла на примере искусственной системы, т.е. системы, создаваемой человеком. Любая искусственная система по определению создается человеком; в соответствии со сформулированным в гл.1 принципом системности такая система является системой-результатом (изделием, продуктом) в некоторой системной триаде «объект-субъект-результат». Жизненный цикл системы с позиций системной технологии содержит концептуальную, физическую и постфизическую стадии. Концептуальная стадия содержит следующие фазы: формирование, исследование, выделение и описание новых потребностей во внешней среде будущей триады «объект-субъект-результат» (напр., во всем или в части общественного производства); формулирование и количественное описание цели (одной из целей), возникающей во внешней среде в соответствии с некоторой новой потребностью; комплексное или частное (напр., экономическое, социальное или экологическое) исследование и обоснование системы, как изделия, необходимого для достижения цели (комплекса целей, связанных с удовлетворением новых потребностей общественного производства), эскиз системы (анализ вариантов построения, выбор и проработка требований к будущей системе в виде задания на создание и реализацию проекта системы), проект системы (разработка всех деталей конкретного варианта воплощения системы, построение макетов и опытных образцов, окончательный вариант обоснования системы и бизнес-плана ее реализации). Действия по реализации системы на ее концептуальной стадии производятся вначале элементами внешней среды, а затем в системе-субъекте будущей триады систем «объект-субъект-результат». На этой стадии модель будущей системы проходит этапы осознания необходимости создания системы (прообраз будущих характеристик системы), формального описания идеи ее построения (прообраз будущего процесса и структуры системы), плана и задания на ее создание, эскизно-технического и рабочего проекта системы. Одновременно могут создаваться компьютерные и натурные модели вариантов системы или ее частей для принятия решения по уточнению модели системы. В системе-субъекте могут быть исследовательские, аналитические, экспертные, проектные, конструкторские, архитектурные, производственные подразделения, общая задача которых – построение концептуальной модели системы в виде проекта, которая, будучи реализована физически, обеспечит, с высокой степенью вероятности, более лучшее (в смысле конкретных критериев) достижение определенной цели во внешней среде по сравнению с другими альтернативами. Физическая стадия содержит следующие фазы: опытно-экспериментальная (изготовление моделей системы в виде опытных образцов, макетов, компьютерных программ, опытно-промышленных изделий пробной или установочной серии при запуске системы в производство; создание производственной системы-объекта для изготовления описываемой системы); производственная (изготовление системы в серийном или единичном производстве и поставка ее заказчику); эксплуатация системы в соответствии с ее назначением во внешней среде до окончания срока морального или физического износа. На этой стадии система-субъект видоизменяется, ее функции расширяются и дополняются новыми: управление производством и маркетинг системы-результата; конструкторское и технологическое обеспечение производства; сервисное сопровождение процесса эксплуатации системы; учет ошибок и внесение изменений в системе производства; актуализация информации о системе, имеющейся у пользователя; предоставление услуг по улучшению системы (или способов ее эксплуатации). Постфизическая стадия содержит следующие фазы: вывод системы из обращения, изъятие из процесса эксплуатации в связи с моральным или физическим износом; консервация и хранение или ликвидация системы; сохранение модели системы на бумажных и/или компьютерных носителях; использование хранимой модели системы для создания более совершенных систем аналогичного или сходного назначения. На этой стадии функции системы-субъекта вновь видоизменяются и сужаются до функций архива информации и склада образцов, макетов системы-результата. Сама система-результат на этой стадии вновь превращается в свою модель – концептуальную систему, которую могут неоднократно использовать при создании новых моделей – концептуальных систем. Мы рассмотрели модель жизненного цикла системы-результата на всем протяжении от появления предпосылок к ее созданию во внешней среде до ее физической «гибели» и продолжения жизненного цикла на постфизической стадии в форме концептуальной системы. И система-субъект деятельности и система-объект деятельности также являются системой-результатом для некоторых метасистем и макросистем общественного производства; к ним полностью применима предложенная модель жизненного цикла системы. Предложенная вербальная модель жизненного цикла системы может быть формализована с помощью графовой модели процесса достижения цели, предложенной в разделе 1.4. Эта задача в дальнейшем будет рассмотрена. * Известно [18], что системы можно моделировать с использованием функционального, морфологического и информационного подходов. Функциональный подход используется для описания процесса системы. Модель процесса системы представляется в виде совокупности функций, преобразующих поступающие ресурсы в конечный результат функционирования системы, используемый во внешней среде. Конечный результат и входные ресурсы представляются в виде функций времени. В каждый данный момент времени состояние системы описывается совокупностью множеств значений входных и выходных воздействий. Функциональная модель предсказывает изменения состояния системы во времени. Морфологический подход предназначен для моделирования структуры системы, ее подсистем. При этом выделяют элементы системы и транспортно-складские связи между ними, предназначенные для обеспечения взаимодействий: информационные, энергетические, материальные и др. Информационный подход позволяет создать модель преобразования информационного ресурса, как для любого элемента и для подсистемы, так и для преобразования, проводимого системой в целом. Информационный подход позволяет создать информационную модель системы, дающую интегральное описание системы, независимо от ее природы и природы преобразуемых ресурсов. * Важной фазой концептуальной стадии жизненного цикла системы является проект системы, с помощью которого система переходит от идеи к физической реализации. При проектировании систем различают: макропроектирование (внешнее проектирование), в процессе которого разрабатывается макропроект и микропроектирование (внутреннее проектирование), в процессе которого разрабатывается микропроект [19]. С позиций системной технологии на стадии макропроектирования создаются макропроект и метапроект.Макропроект можно рассматривать, как совокупность моделей внешней среды, триады систем, ее процесса и структуры в целом, описывающую роль триады систем для внешней среды и роль внешней среды для триады систем. Метапроект можно рассматривать, как совокупность моделей триады систем, а также моделей каждой из систем триады, описывающую роль каждой системы для триады систем и роль триады систем для каждой системы. Микропроект, создаваемый на стадии микропроектирования, можно рассматривать, как совокупность моделей системы, а также ее элементов, элементарных процессов, транспортно-складских взаимодействий между ними, описывающую роль элементов, элементарных процессов и взаимодействий для системы, а также роль системы для них. * Системную технологию можно реализовать только при наличии процесса и структуры системы. Процесс необходим системе, как некоторая совокупность элементарных целесообразных преобразований ресурсов – элементарных процессов изготовления изделия системы. Все эти преобразования можно рассматривать, как функции времени. Тогда процесс – это то, с помощью чего система (замысел, модель, проект системы) реализуетсяво времени. Структура необходима системе, как некоторая совокупность элементов (машин, аппаратов, оборудования), внутри которых локализовано протекание элементарных процессов системы. Все эти части системы имеют «привязку» к определенному месту в пространстве (вода, воздух, земля, космическое пространство). Тогда структура – это то, с помощью чего система (замысел, модель, проект системы) реализуетсяв пространстве. * На всем протяжении жизненного цикла системы ее развитие и взаимоотношения с внешней средой – предмет деятельности системы-субъекта. К модели системы-субъекта, которая существенно видоизменяется в течение жизненного цикла системы, системная технология предъявляет определенные требования. На начальных фазах концептуальной стадии система-субъект выполняет исследовательские и аналитические функции, связанные с анализом потребностей внешней среды в создании данной системы, и может представлять собой исследовательский коллектив, аналитическую группу. На последующих фазах концептуальной стадии, если принято решение о создании данной системы, система-субъект выполняет работы по разработке проекта системы, ее модель дополняется проектным коллективом и группой по управлению проектом; управление проектом на этой стадии заключается в согласовании проекта с представителями внешней среды по вопросам экологии, санитарно-эпидемиологического надзора и др., а также в составлении планов реализации проекта (планов производства работ по реализации проекта при необходимости строительства, планов конструкторской и технологической подготовки производства при необходимости изготовления системы в промышленном производстве и т.д.). На стадии физической реализации проекта системы задачи системы-субъекта связаны с освоением промышленного производства системы и осуществлением строительства; здесь исследовательские и проектные функции системы-субъекта связаны только с необходимостью корректировки проекта по ходу строительства и освоения промышленного производства; здесь нарастают функции управления системой, которые сочетают в себе функции управления проектом системы, как концептуальной моделью системы, с функциями управления производством самой системы, как физической системы (здания, сооружения, машины, аппарата, прибора, оборудования, компакт-диска, видеофильма и т.п.): менеджмент и маркетинг, управление технологическими процессами, учет и анализ и др.; здесь же нарастают функции управления развитием системы, т.е. исследовательские функции системы-субъекта, связанные с подготовкой проекта новой системы, которая сменит рассматриваемую при ее моральном устаревании и выводе из обращения. На постфизической стадии функции системы-субъекта по отношению к рассматриваемой системе сводятся к сохранению информации о ней на бумажных и компьютерных носителях и в форме образцов; система-субъект на данной стадии представляет собой архив или музей или банк данных. Можно сказать, что модель системы-субъекта содержит такие подсистемы, как «аналитик», «исследователь», «проектировщик», «эксперт», «лицензиар», «управление производством», «управление развитием», «контролер», «архивариус», которые переживают разные стадии своих жизненных циклов в соответствии с задачами, которые выполняет система-субъект. * Проект — это наиболее полная модель системы, пригодная для физического осуществления идеи создания и развития системы, и проектировщик — существенная часть модели системы-субъекта, которая заслуживает отдельного рассмотрения. Системная технология может рассматриваться, как методология проектирования и управления проектами систем. Системная технология устанавливает взаимосвязи между данной системой и всеми системами, с которыми она взаимодействует; технологические системы вообще могут существовать только наличии управления проектом системы; управление проектом может быть эффективно только при качественном анализе, показывающем степень заинтересованности внешней среды в осуществлении проекта и в его развитии. * Модель внешней среды — важный компонент, оказывающий существенное влияние на формирование модели системы. С позиций системной технологии внешняя среда включает все системы, которые не контролируются системой-субъектом данной системной триады и всеми ее подсистемами (исследователь, проектировщик, управление производством, развитием и архивом). 3.2. Классификация систем В настоящем разделе разработана классификация систем, принятая в теоретической и прикладной системной технологии. * Концептуальные и физические системы.По признаку принадлежности к стадиям жизненного цикла можно различать концептуальные и физические системы. На концептуальной и постфизической стадиях система существует в концептуальной форме, на физической стадии – в физической форме. Концептуальные системы — это модели систем в виде замыслов, идей, концепций, схем и методов построения систем, математических и иных моделей систем, программ и планов системной деятельности, проектов систем, опытных образцов, макетов, полезных моделей, промышленных образцов, других объектов промышленной собственности, объектов авторского права и смежных прав; концептуальные системы могут использоваться для производства новой информации и знаний в сферах науки, проектирования, культуры, образования, управления и для построения физических систем. Концептуальными системами не являются, по определению, системы наук. Здесь применение термина «система» закономерно в том отношении, что оно отражает порядок, план, строгость построения научной теории, здания науки в целом. Можно утверждать, что этот термин употребляется в отношении научных теорий в более широком смысле, чем в системологии и пока еще не поддается формальному определению в этом смысле. В системологии, экологии, системной технологии, других науках, объектом деятельности которых являются системы, независимо от их физической природы и изученности другими науками, используется довольно большое количество определений системы, но все они имеют более узкий смысл, нежели понятие системы в общеупотребительном широком смысле. Удовлетворять определению концептуальной системы может часть науки, научной теории, посвященная построению некоторого класса систем и, в результате, содержащая в себе общую модель этого класса систем, пригодную для построения исследовательского проекта и физической реализации конкретной системы или для создания новой информации и знания. Концептуальные системы тиражируются, распространяются и хранятся с помощью физических носителей информации: бумага, компьютерные носители, опытные образцы, демонстрационные макеты, архивные модели, видеопленка, аудиокассеты, а также с помощью физических процессов говорения и слушания, радио – и телепередач и т.д. Физические носители также могут представлять собой системы или подсистемы систем, но, как правило, это системы, построенные в соответствии с другими концептуальными моделями, чем та концептуальная система, для которой они используются, как носители. Физические системы — это физическая реализация концептуальной системы в виде совокупности компонент ресурсов (материальных, человеческих, энергетических, природных, информационных, финансовых, коммуникационных, недвижимости, машин, оборудования). К физическим системам относятся технологические системы материального производства, экономико-административные системы управления производством, системы связи, системы организации образования и научных исследований, компьютерные системы и сети и другие системы, результат деятельности которых – материальные, энергетические, информационные продукты, знания и умения человека, потребляемые сферами общественного производства и потребления и природной средой. Физическую систему сопровождает, как правило, информационная модель системы, как разновидность физической реализации концептуальной системы, например, на компьютере в виде программной системы. * Природные и искусственные системы.По признаку происхождения следует различать природные и искусственные системы. Природные системы созданы природой: водные системы (пресноводные и морские), атмосферные, горные системы, солнечная система. В классе природных систем особое место занимают экологические системы. Мы здесь не рассматриваем вопрос, являются ли действия природы целенаправленными или целесообразными; мы имеем в виду лишь состоявшийся факт наличия системы, к появлению которой человек не имеет отношения; следовательно, считаем мы, эта система создана природой. Природа, в нашем понимании, созидатель систем, который, во-первых, не человек, во-вторых, действует не по тем правилам, которые может объяснить для себя человек, и, в-третьих, эти правила приводят к лучшим результатам в смысле построения систем. Искусственные системы созданы человеком: производственная система, система исследования космоса, робототехнические системы, системы сферы здравоохранения, системы обороны, обучающие системы, информационные системы, энергетические системы, коммуникационные системы, государственные системы, политические партии. Внешняя среда создает определенные мотивации, в силу которых поведение человека становится целенаправленным и, как правило, эти цели более успешно достигаются, если человек для этого создает системы. * Социальные системы, системы «человек-машина» и машинные системы.По признаку участия человека в качестве части (элемента, подсистемы) искусственной системы можно различать системы социальные, системы «человек-машина» и системы машинные. Социальные системы состоят только из людей и причинно-следственных отношений между ними; процессы достижения целей и деятельность социальных систем лежат в области принятия решений; эти решения в большинстве случаев относятся к вопросам развития социальных систем и их элементов и совершенствования причинно-следственных отношений между элементами социальных систем. Примерами таких систем могут служить органы управления промышленными фирмами, правительственные ведомства, политические партии, общественные объединения. Наиболее важное значение для таких систем имеют организационная структура (причинно-следственные отношения между людьми) и поведение людей, как элементов системы. Системы «человек-машина» состоят из людей и из компонентов других видов ресурсов (автомобиль, трактор, участок земли, здания, сооружения, компьютер, технологическое оборудование). В большинстве своем системы «человек-машина» являются подсистемами больших и сложных производственных систем в различных сферах деятельности человека. Машинные системы состоят только из машин (компьютеров, контроллеров, регуляторов, технологического оборудования, аппаратов). Это гидроэнергетические системы, системы автоматического регулирования и управления, крылатые ракеты, метеорологические спутники земли, роботы-манипуляторы, транспортные системы. Среди машинных систем выделяются системы, способные самонастраиваться и адаптироваться к изменениям условий внешней среды (самонастраивающиеся системы, адаптивные системы, инвариантные системы). * Открытые и закрытые системы.По признаку наличия взаимодействий с внешней средой системы и с внутренней средой элементов системы можно выделить закрытые и открытые системы. Система является закрытой, если у нее нет причинно-следственных отношений с внешней средой системы и с внутренней средой элементов системы. Характеристики устойчивого состояния равновесия закрытой системы зависят только от начальных условий системы. Если изменяются начальные условия, то изменится и конечное устойчивое состояние. Каковы бы ни были изменения во внешней среде и/или во внутренней среде элементов системы, закрытая система не претерпевает изменений, поскольку между системой и окружающей ее средой существует граница, которая предотвращает воздействие внешней среды на систему; такого же рода граница существует между системой и внутренней средой ее элементов. В реальности трудно представить себе модель такой границы между внешней средой системы и системой; еще более затруднительно представить себе модель такой границы между системой и внутренней средой ее элементов. Например, трудно представить себе такую границу, которая позволяет производственной системе не зависеть от настроения и состояния здоровья сотрудника, от тех воздействий, которым он подвергся в семье, на транспорте, на рынке ценных бумаг. Например, не является закрытой, в смысле зависимости от внутренней среды элементов, система автоматического регулирования уровня жидкости в некотором технологическом цикле; по мере износа датчика и исполнительного механизма система будет переходить к новым устойчивым состояниям и, затем, к состоянию отказа, к потере работоспособности. Тем не менее, закрытые системы находят постоянное применение при моделировании систем, при проведении научных исследований, при проектировании систем. При проведении научных исследований и постановке лабораторных экспериментов для изучения на земле поведения человека в космосе, для анализа условий протекания химических реакций, для изучения физических свойств сплавов металлов принимаются меры по созданию закрытой системы, т.е. по построению границы между системой и влияющими на нее средами: внешней средой системы и внутренней средой элементов системы. Система называется открытой, если существуют причинно-следственные связи между системой и ее внешней средой и/или между системой и внутренней средой элементов системы. Модель открытой системы не может быть построена в виде замкнутой концептуальной системы. К открытым системам относятся экологические, социальные, производственные, технологические, экономические системы. Все живые системы – открытые системы. Живые системы, окружающая их абиотическая среда и взаимодействие между ними и с их внутренними средами образуют экологические системы. В открытых системах одно и то же конечное состояние может быть достигнуто при различных начальных условиях благодаря причинно-следственным отношениям с внешней и с внутренней средами. Абиотические системы являются относительно закрытыми; при наличии обратной связи они могут приходить к состоянию равновесия, которое зависит и от начальных условий, и от внешних воздействий на систему. В результате абиотической системе присуща некоторая видимость целенаправленного поведения. * Постоянные и временные системы.По признаку наличия или отсутствия постфизической стадии жизненного цикла системы можно различать постоянные и временные системы. Постоянная система всегда присутствует в концептуальной и/или физической форме; для нее не существует проблемы постфизической, «пассивной» формы существования. Постоянная система всегда есть и функционирует, производя преобразования, соответствующие замыслу внешней среды. Понятие «всегда» означает всегда, в любой момент времени, когда у внешней среды возникает потребность в результатах функционировании этой системы, постоянная система производит необходимые действия. Временная система — это система, необходимая внешней среде в течение ограниченного периода времени; после ее «активного использования» необходимость внешней среды во взаимодействии с данной системой отпадает; система переходит в постфизическую стадию жизненного цикла. Временными системы могут быть по замыслу или по обстоятельствам; длительность времени существования системы может быть заранее задана или она может зависеть от сочетания характеристик внешней и внутренней сред; сочетание характеристик внешней и внутренней сред, приводящее к гибели системы, может наступить по заранее составленному плану либо это случайное событие. Предприятия, создаваемые для организации уникального спортивного или зрелищного мероприятия, для съемки фильма, для осуществления одиночного кругосветного путешествия, для организации гастролей выдающегося рок-музыканта в городе Н., являются временными по замыслу. Предприятие по выпуску молочной продукции, обанкротившееся в связи с резким падением спроса на его продукцию, университет, закрывающийся в связи с изменением спроса на рынке труда, – временные системы по обстоятельствам. Естественно, что реальные системы являются, в большинстве своем, системами постоянными по замыслу и временными по обстоятельствам. Даже классно-урочная система Яна Коменского может оказаться временной системой, что представить себе пока невозможно. * Стабильные и нестабильные системы.По признаку стабильности результата функционирования либо стабильности структуры или процесса системы либо стабильности некоторого набора характеристик системы могут различаться стабильные и нестабильные системы. Результат функционирования системы оценивается внешней средой, как правило, с помощью набора критериев; эти критерии определяют, является ли данный конкретный результат деятельности системы (и/или процесс системы, и/или структура системы, и/или некоторый набор характеристик системы) таким же привлекательным для внешней среды, как и предыдущие результаты или нет. Если на протяжении длительного периода времени сохраняется привлекательность системы для внешней среды по этим признакам, то это – стабильная система. Если внешняя среда установила для себя, что система часто теряет свою привлекательность, то это – нестабильная система. Система может путем изменения своей структуры или процесса восстановить свою репутацию и вновь доказывать свою стабильность внешней среде; собственно таким путем и достигается стабильность системы; в этом случае система опережает анализ со стороны внешней среды и проводит его сама для того, чтобы заранее определить целесообразные изменения процесса и структуры для создания обоснованного имиджа стабильной системы; такая деятельность является составной частью маркетинга и менеджмента фирмы. Во многих случаях невозможно постоянно на практике определять результат функционирования системы, например, для воинских формирований. В этих случаях показателем стабильности системы может явиться некоторый набор ее характеристик (состояние воинской дисциплины, следование уставам, умение ходить в строю, умение зарабатывать хорошие показатели на учениях и т.д.). * Технологические, управленческие и производственные системы.По признаку участия в выпуске изделия можно разделять системы технологические, управленческие, производственные. Технологические системы непосредственно заняты выпуском изделий (система-объект), управленческие — обеспечением качественного взаимодействия подсистем технологической системы между собой и обеспечением взаимодействия технологической системы в целом с внешней средой (система-субъект), производственная система — это объединение технологической и управленческой систем (завод, комбинат, фирма, корпорация и т.д.). Классификация технологий рассмотрена нами в главе 1; она соответствует классификации технологических систем, принятой в системной технологии. * Системы производства (производственные системы).По признаку принадлежности к определенным сферам общественного производства следует различать производственные системы материального, информационного, энергетического, человеческого, коммуникационного, финансового, природного, строительного производств. Все эти системы предназначены для удовлетворения определенных потребностей человека, домашнего хозяйства, общества, общественного производства. Системы материального производства заняты выпуском материальных изделий для удовлетворения материальных потребностей жизнедеятельности человека и домашнего хозяйства. Системы информационного производства заняты выпуском информационных изделий для удовлетворения информационных потребностей жизнедеятельности человека, домашнего хозяйства, общества и общественного производства. Системы энергетического производства обеспечивают энергетические потребности домашнего хозяйства и общественного производства. Системы человеческого производства обеспечивают удовлетворение потребностей домашнего хозяйства, общества и общественного производства в человеческих ресурсах. Системы коммуникационного производства обеспечивают потребности человека, домашнего хозяйства, общества и общественного производства в коммуникациях. Системы финансового производства обеспечивают потребности человека, домашнего хозяйства и общественного производства в финансовых ресурсах. Системы природного производства обеспечивают потребности человека, домашнего хозяйства, общества и общественного производства в природных ресурсах. Системы строительного производства (в т.ч. и машиностроительного) обеспечивают потребности домашнего хозяйства и общественного производства в недвижимости, машинах, оборудовании, аппаратах, агрегатах. Более подробно эти классы систем рассмотрены в главах, посвященных приложениям системной технологии. * Системы управления (управленческие системы).По признаку участия нижних уровней в управлении следует различать административные, демократические, административно-демократические системы управления. Системы административного управления при принятии решений рассматривают преимущественно только те альтернативы, которые выработаны ими или вышестоящими уровнями иерархии управления; нижестоящие уровни необходимы в данном случае только для обеспечения информацией о своем состоянии и для исполнения решений. Априори здесь предполагается недостаточная компетентность системы нижнего уровня в вопросах выработки и принятия решений. Системы демократического управления при принятии решений рассматривают все альтернативы, поступающие от систем всех уровней, и считают их компетентность достаточной для квалифицированной разработки представляемых ими альтернатив и для квалифицированной оценки альтернатив, представляемых другими. Принятие решений осуществляется на основе большинства голосов, поданного за конкретный вариант решения, от представителей систем всех уровней. Системы административно-демократического управления при принятии решений рассматривают вначале все альтернативы, поступающие от систем всех уровней и мнения всех уровней обо всех альтернативах; принятие решений осуществляется системой верхнего уровня после изучения всех мнений и всех альтернатив. В отношении к системам управления производством будем рассматривать системы административного, экономического (что будем считать синонимом демократического) и экономико-административного (что будем считать синонимом административно-демократического) управления. Более подробно эти классы систем рассмотрены в разделе, посвященном применению метода системной технологии в управлении. Системная технология рассматривает также административные, демократические, административно-демократические системы проектирования, анализа, исследований, производства, экспертизы, контроля (инспекции, надзора), разрешительные (лицензирования), архивные. * Деятельностные системы.По признаку вида деятельности, связанной с удовлетворением потребностей внешней среды, системы-субъекты можно разделить на аналитические, экспертные, исследовательские, проектные, производственные (рассмотрены выше), управленческие, архивные, разрешительные, контрольные. Деятельность аналитических систем заключается в анализе потребностей внешней среды, а также целей, соответствующих этим потребностям, и в анализе действий всех систем по обеспечению достижения поставленных целей, а также по корректировке этих целей для обеспечения меняющихся потребностей внешней среды. Деятельность исследовательских систем заключается в изучении всех альтернатив удовлетворения потребностей внешней среды, достижения поставленных целей и построении исследовательского проекта будущей системы, содержащего альтернативы ее практической реализации. Деятельность проектных систем заключается в выборе окончательного варианта построения системы и в создании практического проекта, который можно реализовать с учетом всех ограничений и возможностей производства. Деятельность управленческих систем заключается в обеспечении ресурсами и взаимном согласовании действий всех систем, в том числе производственных и технологических, участвующих в удовлетворении потребностей внешней среды от момента возникновения идеи потребности до смены данной потребности другой. Деятельность экспертных систем заключается в выработке заключений о соответствии конкретных потребностей, а также целей, ресурсов и технологий их достижения, интересам внешней среды или ее конкретной части, например, государственного органа. Деятельность архивных систем заключается в обеспечении сохранности и предоставлении информации о прошлой деятельности и целях внешней среды и о создававшихся ею системных триадах. Деятельность разрешительных систем заключается в определении соответствия некоторой заявляемой системной триады требованиям внешней среды и/или в определении возможности для разрешения (лицензии) осуществлять заявленный вид деятельности данному заявителю. Деятельность контрольных систем заключается в сравнении фактической и проектной (или декларируемой) систем, нахождения причин расхождений и возможностей для обеспечения их взаимного соответствия. 3.3. Математическая модель общей системы Элементы и элементарные процессы * Процесс системной технологизации является узловым процессом общественного производства и для индустриального и для постиндустриального общества. Для формализации этого процесса необходимо решить задачу построения математической модели общей системы, которая может быть эффективно использована при системной технологизации любых систем, независимо от того, к какому виду ресурсов относится изделие или продукт системы (управленческое решение, знания и умения обученных специалистов и т.д.), какими конкретными способами оно изготавливается, какими функциями времени и состояния системы описываются преобразования ресурсов (как изготавливается станок, формируются знания и умения обучаемых, как вырабатывается управленческое решение и т. д.). Разработка комплекса технологических способов и средств воздействия на перерабатываемые ресурсы с целью изготовления изделия для конкретных систем с использованием предлагаемых моделей – это вопросы прикладного исследования в каждом конкретном варианте системной технологизации; основа для этого изложена в других разделах данной работы. * В любой системе, если ее трактовать как технологическую систему, содержатся человеко-машинные элементы, каждый из которых может реализовать некоторую элементарную часть системного технологического процесса изготовления изделия системы (напр., элементарный процесс изготовления детали прибора). Этому элементарному процессу соответствует некоторая элементарная цель (напр., обеспечить параметры детали прибора). Элемент системы реализует достижение одной и только одной элементарной цели. Если его расчленить (например, отделить токаря от токарного станка или преподавателя – от аудитории), то он не может реализовать процесс достижения элементарной цели в данной системе. Кроме этого, в системе должны быть реализованы процессы складирования и транспортирования (процессы коммуникаций) перерабатываемых ресурсов, обеспечивающие взаимодействия между человеко-машинными элементами системы во времени (склад) и в пространстве (транспорт). Понятия склада и транспорта двойственны. Транспорт это «склад на колесах», «динамический склад» и к его функционированию предъявляются требования в виде ограничений по времени. Склад это «статический транспорт» и к его функционированию предъявляются требования в виде пространственных ограничений (например, по объему запасов). Для реализации элементарных процессов взаимодействия системе необходимы элементы взаимодействия. Элемент взаимодействия обеспечивает взаимодействие между двумя и только между двумя элементами системы. Также, как и элемент системы, он не может быть расчленен на части, способные обеспечить элементарный процесс взаимодействия в данной системе. В результате можно заключить, что целенаправленная система содержит два вида элементов. Первый вид – основной целенаправленный элемент, обеспечивающий основной процесс изготовления изделия, ради которого, собственно и создается система; этот элемент мы называем, как «элемент системы». Второй вид – коммуникационный, транспортно-складской, дополнительный элемент, для обеспечения взаимодействия между основными целенаправленными элементами; необходимость в нем появляется по той причине, что элементы системы требуют организации взаимодействия во времени (так как их функционирование «расписано во времени») и в пространстве (так как они имеют разные пространственные координаты); этот элемент мы называем, как «элемент взаимодействия». * Сформируем, на основе изложенного, «элементарную часть» математической модели общей системы S. Математическую модель системы определим в теоретико-множественных терминах. Такой подход позволит применять наименее структурированные и наиболее широко понимаемые понятия, на основе которых можно применять метод системной технологии, наделив элементы множеств и отношения между ними конкретными свойствами. Примем, что: система – это множество упорядоченных элементов системы, осуществляемых ими элементарных процессов и причинно-следственных отношений между ними. Упорядочение элементов и «физическая» реализация причинно-следственных отношений в виде элементов взаимодействия производится в соответствии с выбранной технологией достижения цели, которая связана с изготовлением изделия системы. Элементы и элементарные процессы неделимы в смысле достижения цели системы. Элементарным процессом достижения целив назовем процесс достижения одной и только одной элементарной цели, в ? В Здесь В – множество всех элементарных процессов достижения цели, используемых в данной системе. Целенаправленным элементом системы или простоэлементом системыа назовем часть системы, осуществляющую один и только один элементарный процесс достижения цели, а ? А , Здесь А – множество всех элементов, которые используются для построения данной системы. В А допускается «рождение» – появление новых элементов и «смерть» – выбытие элементов. Элементарным процессом взаимодействияd назовем процесс взаимодействия между определенными двумя и только между этими двумя элементарными процессами достижения цели системы, d ? D . Здесь D – множество всех элементарных процессов взаимодействия в системе. Элементом взаимодействияе назовем элемент, предназначенный для осуществления одного и только одного элементарного процесса взаимодействия, е ? Е . Здесь Е – множество всех элементов взаимодействия, которые используются для построения данной системы. В Е также допускается «рождение» и «смерть» элементов. Иногда удобно будет считать, что элементы е содержат ключ, имеющий только два логических состояния: «взаимодействие разрешено» и «взаимодействие исключено»; это может облегчить описание перехода от одного варианта модели системы к другому. Элементарной цельюf назовем цель, достигаемую каким-либо одним элементарным процессом достижения цели, f ? F . Здесь F – множество множеств целей системы S, соответствующих всем возможным изделиям и продуктам системы (и их модификациям); множество S — множество всех потенциально возможных продуктов (изделий) системы и их модификаций. Множество F ? F соответствует одному из изделий S системы S. Надо отметить, что в большинстве своем технологические системные процессы по замыслу строятся, как процессы поочередного достижения цели систем «по частям». Например, по отдельности изготавливаются детали и блоки прибора. Соединение их в прибор, т.е. в систему-изделие, приводит к достижению цели, которая не может быть описана, как математическая функция с аргументами в виде элементарных целей (с помощью «дерева целей», напр.) и описывается только понятием целого: свойства прибора, (достижение которых было целью данной технологии), как целого «больше», чем любая комбинация свойств частей прибора, как элементов целого. Будем рассматривать только тот случай, когда все множества A , B ,D , E , F , S конечны. Пересечение каждой пары множеств А , В , D , Е , F , S представляет собой конечное пустое множество. Модель полной системы. ? Полной системой S назовем совокупность взаимосвязанных элементов a ? A, е ? Е (A ? A , , E ? E ) и осуществляемых ими элементарных процессов в ? В, d ? D (B ? В D ? D ), предназначенную для достижения цели F, связанной с выпуском определенного изделия (продукта) S , S ? S , F ? F . Модель полной системы (математическую модель полной системы) S определим, как конечную алгебраическую систему S= < { A, В, D, Е }, W, ? >, (3.3.1) состоящую из множества-носителя {А, B, D, Е}, множества операций W={W , W , …, W } и множества предикатов ?={? , ? , …, ? }. Для описания всех необходимых взаимосвязей в модели системы (3.3.1) используем два множества: W и ? . Множество W является множеством всех операций, используемых при анализе и синтезе всех моделей S из множества S . Множество операций W используется для определенной модели S. Множество S – это множество моделей системы S, причем каждая модель S отражает одну технологию изготовления одного изделия, выпуска одного продукта (или его модификации). Множество W может содержать теоретико-множественные операции объединения, пересечения и другие. Множество ? содержит предикаты, используемые для описания отношений на множествах-носителях всех моделей системы. Множество главных предикатов ? содержит предикаты ? -? , определяющие отношения связи на {A, В, D, E}, которые должны соответствовать цели F изготовления «изделия S », F ? F , S ? S . Переход от модели системы S для одной технологии изготовления изделия к модели другой технологии осуществляется путем замены одной совокупности A,B,D,E,W,? на другую. Используя эти совокупности для технологий изготовления всех изделий, можно составить множество S всех моделей S данной системы, S ? S .. * В модели (3.3.1) для конкретной реализации системы S, значение предиката ? ? ? равно 1 (истинно), если взаимосвязи между элементами множества-носителя соответствуют выбранной технологии изготовления изделия. Множество главных предикатов ? описывает взаимосвязи, необходимые для конкретной реализации S. Минимально необходим, независимо от природы системы, набор предикатов, устанавливающих такое подмножество отношений взаимосвязи, которое можно представить связным подграфом, без петель, покрывающим все вершины графа отношений. Кроме того, с помощью элементов множества ? и введения дополнительных предикатов можно описать различные технологические маршруты изготовления узлов и блоков, сборки изделия, подготовки документов, разработки проектов, изготовления управленческого решения и т.д. Переход от модели изготовления изделия F к модели для изготовления другого изделия осуществляется путем замены множества главных предикатов ? на другое. Реализовать необходимые переходы от одной модели к другой можно установлением набора состояний «взаимодействие разрешено» и «взаимодействие исключено» в элементах е ? Е. * В процессе формирования конкретной модели системы используются операции множества W (напр. при декомпозиции системы), состав которого определяется в зависимости от задач анализа и синтеза системы. Во многих важных приложениях достаточно, если множество-носитель образуете с W решетку или алгебру Кантора. Формирование конкретной модели системы с определенным набором элементов из {A, B, D, E} и множества ? может производиться следующим образом. Будем считать, что множества A , B , D , E определены, как наборы элементов, пригодных для всех возможных конкретных реализаций S. Вначале устанавливается некоторое отношение на множестве B , т.е. выбираются и упорядочиваются процессы b ? В, B ? B . Тем самым упорядочивается набор элементарных процессов достижения цели, который должен обеспечить системный процесс достижения цели, для реализации которого, в данном случае, нужна система S. Одновременно устанавливается необходимость обеспечения взаимодействий для пар процессов из В , определяются требования к элементарным взаимодействиям со стороны каждого процесса b, b ? В . Затем устанавливается отношение на паре множеств В , A , определяются и упорядочиваются основные элементы из А , обеспечивающие выбранный набор процессов из В , А ? А , В ? В . Параллельно устанавливается некоторое отношение на паре множеств В , D и определяется набор элементарных процессов взаимодействия d? D, D ? D , обеспечивающих взаимодействие между элементарными процессами b, b ? В. При этом, для учета ограничений на элементарные процессы d ? D со стороны элементов множества А, устанавливается отношение на паре A, D. И, наконец, устанавливаются отношения на паре D , Е , позволяющие сформировать набор элементов е ? Е, E ? E ,которые войдут в данную реализацию системы. Для учета ограничений на элементы е ? Е со стороны элементов множеств А и В должны быть установлены соответствующие отношения на парах А, Е и В, D. * В процессе формирования модели конкретной реализации S описанная последовательность многократно повторяется и образует, в конечном счете, системный процесс достижения цели (модель которого описана в разделе 4.1) в некоторой системе-субъекте по созданию системы S. В качестве ресурсов выступают описания возможностей использования различных видов ресурсов для достижения некоторой глобальной цели, поставленной перед создаваемой системой; в качестве методов выступают описания различных процессов, которые можно реализовать для достижения цели. Вначале описывается глобальная цель создания системы (этап 1), затем возможные виды ресурсов для построения элементов системы (этап 2), далее – процессы использования ресурсов (этап 3), которые можно реализовать в системе и ограничения (этап 4), накладываемые на цель, ресурсы, процессы. Затем выбирается конкретный процесс использования ресурсов для достижения цели (этап 7), процесс апробируется (этап 5), оценивается (этап 6). Если не возникает необходимости создания системы, то найденный процесс используется для достижения глобальной цели. Но в большинстве случаев оказывается, что имеющиеся ресурсы позволяют достичь глобальную цель только в виде процесса последовательного достижения ряда частных целей. Поэтому на следующих циклах производится преобразование глобальной цели в систему F локальных (на уровне подсистем) и, далее, элементарных целей (на уровне элементов) (этап 1); тогда этапы 2,3,4 будут заключаться в создании системы S на множествах элементов из имеющихся ресурсов и элементарных процессов с учетом ограничений, этапы 5,6,7 будут заключаться в анализе вариантов конкретной реализации системы. В результате на некотором уровне элементарности будут сформированы множества типа {А, B, D, Е}, описывающие модели конкретных реализаций системы для различных целей, соответствующих различным возможным изделиям и продуктам системы. * В соответствии с принципом системности можно определить, в данном случае, что создаваемая система S является системой-объектом S , система целей F, описывающая изделие системы, является системой-результатом S Для моделирования системы-объекта и системы-результата должна использоваться одна модель общей системы (3.3.1). Таким образом, предлагаемый подход позволяет проводить исследование F и S по отдельности, учитывая отношения взаимосвязи, которые устанавливает между ними создающая система – субъект S . Отношения взаимосвязи, которые установятся в результате, между элементами систем F и S, обозначим через ? и ? , I ? {A, B, D, E}. * Модели F и S и множества A, B, D, E описывают ряд взаимосвязей, которые некоторая создающая система устанавливает для конкретной реализации S. Они в обобщенной форме показаны и обозначены на рис.3.1 а,б в виде графов, вершинами которых являются множества A, B, D, E , F, а ребрами – отношения взаимосвязи. Так, через ? обозначено отношение ?, ? ? A ? B, описывающее тот факт, что каждый элемент системы а , a ? A, реализует один и только один элементарный процесс достижения цели b , b ?В. В свою очередь, отношение ? описывает взаимосвязи такого вида: элементарный процесс достижения цели b ? B, реализуется одним элементом a ?A. Аналогичным образом описываются все остальные взаимосвязи. Для наглядности ориентированный граф отношений показан на рис. 3.1а, 3.1б, в виде двух подграфов. Вершины графа – множества, ребра – отношения между ними. Ребра без весов отражают отношения включения множеств. * Каждый путь на этом графе, проходящий множества А, В, D , E, F, P, С в какой-либо последовательности, отражает определенный порядок действий при осуществлении какой-либо деятельности (исследование или проектирование системы, технологический процесс изготовления изделия) и может описываться каким-либо дополнительным или главным предикатом. В свою очередь, каждое минимальное покрытие всех вершин графа определений описывает режим системы, отвечающий решению отдельных задач. Так, путь F – B – A – D – E на графе определений и отношений отражают простейшую последовательность формирования системы, создаваемую для реализации процесса достижения цели, описанную в начале раздела, путь А – F – D – F – B – F отражает последовательность прохождения предмета труда в технологическом процессе и т.д. a) б) в) Рис. 3.1. Графы отношениий. Модели процесса и структуры. * В общем случае каждому элементу a из А соответствует некоторое подмножество элементарных процессов взаимодействия Di ? D, через которые a воздействует на другие элементы множества А. Каждому элементу a из А соответствует также некоторое множество элементарных процессов взаимодействия Dj ? D, через которые a подвергается воздействию других элементов из А. Пересечение Di ? D = D множество элементарных процессов взаимодействия, через которые a воздействует на a (для упрощения в дальнейшем примем, что D — одноэлементные множества: D = {d }). В противном случае соответствующее обстоятельство будем специально оговаривать. Будем считать, что аналогичным образом выделены подмножества элементов E , E , E , обеспечивающие, соответственно, множества процессов взаимодействия D , D , D . * Будем считать, что главным предикатам ? -? соответствуют отношения ? , ? , ? , ? строгого частичного порядка и отношения ?, ? , ?, ? , ?, ? , ?, ? , ? , ? , ? , ? , ? , ? , ? . Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W. * Сформулируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов ?; множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения ?, ?, ?, ?, ? , , и, соответственно , ? , ? , ? , ? , ? . Для описания взаимосвязи с F выберем отношение ? . Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты ? ? ? описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже. * Модели процесса и структуры системы определим в следующем виде. Процесс Р системы S (назовем его такжеполным системным процессом) – это множество взаимосвязанных элементарных процессов: P = < {B, D}, W, ? >; ? ? ?.(3.3.2) Структура С системы S (назовем ее такжеполной системной структурой) – это множество взаимосвязанных элементов системы: С = < {A, E}, W, ? >; ? ? ?.(3.3.3) * В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D; следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (3.3.2) и (3.3.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (а , e ) и (в , d ), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (3.3.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур ? и ? , ? ? ? . Далее, любая операция из W , например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из W , т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, W = Wc. Но так как W ? W , W ? W и W \ {W ? W } = ?, то Wp = W = W. Итак, доказана следующая Теорема 3.1.Для модели системы S модели процесса Р и структуры С изоморфны. * Модели полных, основных и дополнительных системных объектов. На основе (3.3.1)–(3.3.3) сформулируем следующий результат. Теорема 3.2.Модель полной системы S – это совокупность моделей процесса Р и структуры С: S = < P,C,?(?),?(? ),?(?),?(? )>(3.3.4) * Полный процесс системы Р мы представляем как объединение основного процесса достижения цели Р и системного процесса взаимодействия Р . Хотя нами рассматриваются системы, создаваемые для реализации процесса, все результаты системной технологии могут быть применены для систем, предназначенных для реализации структуры. В системах, предназначенных для реализации системного процесса достижения цели, основные элементы системы а реализуют элементарные процессы достижения цели в. Но элементарные процессы достижения цели не могут объединяться в системный процесс P , минуя элементарные процессы взаимодействия d. Следовательно, необходимо описать вклад, вносимый элементарными процессами взаимодействия, в системный процесс достижения цели. Это участие не является целенаправленным, как в случае элементарных процессов достижения цели в, и, как правило, приводит к некоторому ухудшению P . Допустимое влияние элементарного процесса взаимодействия должно, видимо, заключаться в том, чтобы вносить какие-либо допустимые изменения в процесс достижения цели P при «передаче» предмета труда от одного элементарного процесса достижения цели в к некоторому другому элементарному процессу достижения цели в . Обозначим это допустимое изменение ? — изменение результатов некоторого элементарного процесса в при «передаче» предмета труда к некоторому другому «следующему» элементарному процессу в . Множество этих изменений обозначим ? , т.е. ? ? ? . Отсюда вытекает следующая теорема. Теорема 3.3.Каждый элементарный процесс взаимодействия d, d ? D, между некоторыми двумя элементарными процессами достижения цели в и в (в , в ? В) объединяет в себе собственно элементарный процесс взаимодействия d и элементарный процесс обеспечения ограничения ? : d = { d , ? }; d ? D ; ? ? ? ; D = { D , ? }.(3.3.5) Системный процесс взаимодействия Р , в свою очередь, реализуется в системе элементами взаимодействия е. Но элементарные процессы взаимодействия d, которые ими реализуются, не могут быть объединены в системный процесс взаимодействия P без участия элементарных процессов достижения цели в. Участие элементарных процессов достижения цели в в процессе P (аналогично учету участия элементарных процессов d в процессе P ) должно быть учтено введением ограничений ? на изменение характеристик элементарных процессов взаимодействия при «переходе» через некоторый элементарный процесс из В («обеспечение взаимодействия между элементарными взаимодействиями»). Множество этих ограничений обозначим ? , т.е. ? ? ? . Отсюда следует Теорема 3.4.Каждый элементарный процесс в, в ? В, реализуемый элементом а ? А, объединяет в себе собственно элементарный процесс достижения цели в и элементарный процесс обеспечения ограничения ? : в = {в , ? }; в ? В ; ? ? ? , В = { В , ? }.(3.3.6) Пересечения D ? ? и В ? ? не обязательно пустые множества. * Полученные результаты и наличие взаимнооднозначных соответствий между элементами множеств А и В, а также между элементами множеств Е и D, соответственно, позволяют сформулировать следующую теорему. Теорема 3.5.Элементы а и е разложимы на части, реализующие части процессов в и d: а = {а , ? }; а ? A ; ? ? ? ; А = {A , ? }; e = { e , ? }; e ? E ; ? ? ? ; E= { E ? }; (3.3.7) * В качестве обобщения сформулируем следующий результат. Теорема 3.6.Элементы а, е (а ? А, е ? Е) и элементарные процессы в, d (в ? В, d ? D) в модели системы S разложимы на части, образующие структуры C , C и процессы Р , Р основной S и дополнительной S систем. Следуя доказанному, сформулируем следующие результаты. * Системный процесс достижения цели Р представит собой объединения элементарных процессов достижения цели в и процессов обеспечения ограничений на допустимое изменение результатов элементарных процессов достижения цели ? при передаче результатов одного элементарного процесса достижения цели к другому. Отсюда следует, что Модель основного системного процесса Р имеет вид: Р = < { B , ? }, W, ? >. (3.3.8а) * Системный процесс взаимодействия, в свою очередь, представит собой объединение элементарных процессов взаимодействия d и процессов обеспечения ограничений на допустимое изменение характеристик взаимодействия ? при «передаче взаимодействия» через процессы достижения цели. Отсюда следует, что Модель дополнительного системного процесса Р имеет вид: Р =< { D , ? }, W, ? >. (3.3.8b) * Следуя (3.3.7) и (3.3.8), можно сформулировать следующие определения структур. Модель основной системной структуры C имеет вид: C = < { A , ? }, W, ? >. (3.3.9а) Модель дополнительной системной структуры С имеет вид: С = < {? , E }, W, ? >. (3.3.9b) • Исходя из (3.3.4), где доказано, что система – это объединение процесса и структуры, определим основную и дополнительную системы. Модель основной системы S имеет вид: S = <{P , C }, W, ?>; S = <{A , B , ? , ? }, W,?>. (3.3.10) Модель дополнительной системы S имеет вид: S = <{P , C }, W, ?>; S = <{? , ? , D , E }, W, ?>. (3.3.11) * Другими словами, полная система S — это объединение полного системного процесса Р Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/marat-telemtaev/sistemnaya-tehnologiya/?lfrom=334617187) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
КУПИТЬ И СКАЧАТЬ ЗА: 99.90 руб.