Сетевая библиотекаСетевая библиотека

Справочник окулиста

Справочник окулиста
Автор: Вера Подколзина Жанр: Медицина Тип: Книга Издательство: Литературное агентство «Научная книга» Год издания: 2008 Цена: 199.80 руб. Отзывы: 1 Просмотры: 48 Скачать ознакомительный фрагмент FB2 EPUB RTF TXT КУПИТЬ И СКАЧАТЬ ЗА: 199.80 руб. ЧТО КАЧАТЬ и КАК ЧИТАТЬ
Справочник окулиста Вера Александровна Подколзина Полный справочник содержит самые необходимые сведения, которые будут полезны всем, кому не безразлично свое здоровье. В справочнике дано подробное описание анатомии и физиологии органа зрения, а также его взаимосвязь со всеми органами и системами организма. Приведены самые современные методики обследования органов зрения. Даны рекомендации по профилактическим мероприятиям, позволяющим улучшить зрение и снизить риск развития заболеваний. Наглядно рассмотрены патологические процессы, приводящие к поражениям и травмам органов зрения, также дана подробная картина их клинических проявлений и методы лечения, включающие традиционную и нетрадиционную терапию. Подколзина В. А Справочник окулиста КРАТКАЯ ИСТОРИЯ ОФТАЛЬМОЛОГИИ В истории офтальмологии можно отметить два основных периода. Первый, очень длительный (от 2000 г. до н. э. и до XVIII в. н. э.), по существу предшествующий истории науки в современном представлении, период пассивного накопления наблюдений. К первому периоду относятся древние, средние века и период новой истории до XVII–XVIII вв. Второй период охватывает два последних столетия. Начало второго периода по существу и является началом развития науки в современном понимании. Таким образом, офтальмология, основанная на данных научного теоретического естест-возна-ния, возникла только в XIX в. Формирование современной клинической медицины началось только в XIX в, когда возникла историческая необходимость в широкой народной медицине и была подготовлена теоретическая и методологическая база для научной медицины. Ведь только в XVIII в. начали оформляться в самостоятельные науки физиология, анатомия и биохимия. Что же касается истоков офтальмологии, то имеется немало документов древних культур, на основании которых можно заключить, что болезни глаз и их лечение имели очень большое значение во все времена. От ассиро-вавилонской культуры осталась клинопись времени Хаммурапи (2250 лет до н. э.), в которой речь идет о болезнях глаз. В священных книгах Древнего Египта (1500 лет до н. э.) описано 28 болезней глаз и их лечение. В древнегреческой медицине, в сочинениях Гиппократа (около 460–377 гг. до н. э.) уже имеются попытки дать описание строения глаза, его развития и происхождения болезней. Правда, все эти объяснения с современной точки зрения очень наивны и примитивны. Через 400 лет после Гиппократа римский врач Корнелиус Цельс (50–25 гг. до н. э.) описал анатомию глаза и 30 болезней, из которых 13 подлежали хирургическому лечению. Он впервые описал катаракту. Последним ученым-медиком греко-римской эпохи был Клавдий Гален (131–201 гг. до н. э.), считавшийся самым крупным теоретиком античной медицины. Его представления об анатомии глаза просуществовали до XVII в., несмотря на ошибочность и примитивность его описаний. Так, например, самой главной частью глаза Гален считал хрусталик, на котором, по его представлениям, фиксируются зрительные впечатления. Арабские врачи оставили 23 специальных подробных руководства по глазным болезням. Самым известным из этих врачей был Али-бен-Иза (XI в.), его «Памятная книга для глазных врачей» была переведена на латинский и еврейский языки и служила основным руководством как для арабских, так и для европейских врачей почти до XVIII в. Вопросы лечения глаз включены были также и в «Канон врачебного искусства» Ибн-Сины (Авиценны), крупнейшего ученого, философа и поэта Средней Азии XI в. Веком возрождения офтальмологии считают XVIII век, однако развитие науки шло очень медленно, да и только в области офтальмохирургии. Крупнейшим представителем этого периода был французский врач Давиэль, предложивший способ операции экстракции катаракты. Выделение офтальмологии в самостоятельную дисциплину и создание специальных кафедр в университетах произошло в России и на Западе почти одновременно. Появились ученые-окулисты, и развитие офтальмологии пошло очень быстро. В этот период исключительно важную роль в развитии офтальмологической науки сыграли работы выдающегося астронома Иоганна Кеплера, заложившего к 1604 г. основы современной экспериментальной оптики. Результаты его исследований опровергли вековые заблуждения ученых, утверждавших, что органом зрения и световосприятия является только хрусталик глаза. В 50-60-е гг. XIX в. на смену эмпирической пришла научная офтальмология. Так, в 1862 г. Спеллен предложил табличный метод определения остроты зрения. Франс Дондере в 1864 г. создал стройное учение об аномалиях рефракции и аккомодации. В 1951 г. Герман Гельмгольц изобрел офтальмоскоп и разработал основы новой науки – физиологической оптики. Этот ученый, возглавлявший кафедру физики в Берлине, сделал много для развития офтальмологии. В настоящее время имя Г. Гельмгольца носят клиники и институты в разных странах мира. В 1850 г. крупнейшим офтальмологом А. Грефе была основана глазная клиника в Берлине. Заслуги первых офтальмологов, и особенно А. Грефе, очень велики: с именами этих врачей связаны названия определенных симптомов, методов, инструментов, которыми и по настоящее время пользуются окулисты всех стран. Значительный вклад в развитие мировой офтальмологии в XIX в. был сделан нашими соотечественниками, учениками А. Грефе, основавшими собственные офтальмологические школы в Санкт-Петербурге (Э. А. Юнге) и Москве (Г. И. Браун). В 1862 г. Г. И. Браун написал первое «Руководство к глазным болезням». В дореволюционное время основателями офтальмологических школ в нашей стране были профессора Е. В. Адамюк (Казанский университет), А. Н. Маклаков и А. А. Крюков (Московский университет), В. И. Добровольский и Л. Г. Белляр-минов (ученики Э. А. Юнге, Медико-хирургическая академия), А. В. Иванов и А. В. Ходик (Киевский университет), Л. Л. Гиршман (Харьковский университет) и др. Все они были прогрессивными общественными деятелями и учеными с мировым именем, которые внесли большой вклад в развитие отечественной офтальмологии. Это А. Н. Маклаков. М. М. Волков, А. А. Крюков – в Москве; В. П. Добровольский, Л. Г. Белляр-минов – в Петербурге; Е. В. Адамюк – в Казани, А. В. Иванов, А. В. Ходин – в Киеве; С. С. Головин и др. Каждый внес свою долю знаний, и русская офтальмология начала быстро развиваться. Очень большую роль в развитии отечественной офтальмологии сыграли: журнал «Вестник офтальмологии», который начал выходить в 1884 г. по инициативе профессора Киевского университета А. В. Ходика; научные общества глазных врачей, созданные к концу XIX в. во всех университетских и некоторых губернских городах; систематические Пироговские съезды, при которых всегда были секции глазных врачей; участие русских окулистов в Международных конгрессах офтальмологов, начиная с 1857 г. В начале ХХ в. в дореволюционной России насчитывались сотни тысяч слепых, более 1 млн больных трахомой. При этом число глазных врачей и количество специализированных коек было ничтожно малым для такой массы больных. Так, в 1913 г. во всей России было только 209 специалистов-офтальмологов (к 1980 г. в Советском Союзе – более 15 тысяч). С учреждением советского здравоохранения стали готовить специалистов-офтальмологов. Широчайшая сеть специального поликлинического обслуживания населения как города, так и деревни приблизила окулистов к народу. Даже в самых отдаленных областях страны возникают медицинские институты. Началась систематическая плановая работа по борьбе с трахомой, оспой и другими распространенными болезнями, с травматизмом и профессиональными заболеваниями. Всю офтальмологическую работу в стране возглавили вновь открытые специальные офтальмологические и трахоматозные институты: в Москве, Ленинграде, Харькове, Одессе, Казани, Ташкенте, Ашхабаде и других городах (более 10 институтов). Организовано свыше 90 кафедр глазных болезней в медицинских вузах. Из ученых-офтальмологов, создателей советской офтальмологии, самыми выдающимися были В. П. Одинцов (1879–1938) – Ьй Московский институт, профессор М. И. Авербах (1872–1944) – организатор и директор офтальмологического института имени Гельмгольца в Москве. Профессор Ленинградского медицинского института академик В. В. Чирновский (1875–1956) и профессор Воронежского медицинского института А. И. Покровский (1880–1958) большую часть своей жизни посвятили организации плановой борьбы по ликвидации трахомы. Профессор, действительный член АМН СССР и АН УССС В. П. Филатов (1875–1956), создатель Одесского офтальмологического института и талантливый офтальмохирург, разработал метод кератопластики, благодаря которому можно вернуть зрение при бельмах роговой оболочки. Усилиями большой армии советских офтальмологов и организаторов здравоохранения под научно-методическим руководством директора Московского научно-исследовательского института глазных болезней им. Гельмгольца А. В. Рославцева и группы сотрудников – Г. И. Волковой, Н. Д. Зацепиной, З. Г. Дюдиной, Н. С. Зайцевой и А. А. Шаткина, работавших под руководством академика М. П. Чумакова, трахома как массовое заболевание была ликвидирована в нашей стране уже в 50-е гг. В начале 70-х гг. XX в. перед отечественной офтальмологией встала задача разработки эффективных способов борьбы с травмами глаз – причинами слепоты. Новое поколение советских офтальмологов использовало опыт оказания помощи раненым в годы Великой Отечественной войны. Особенно значимыми для практической офтальмологии того времени были труды Б. Л. Поляка, М. Б. Чутко, В. Н. Архангельского, Н. А. Вишневского, И. Э. Барбеля, П. Е. Тихомирова и др. В связи с появлением ядерного оружия и наличием угрозы массовых лучевых и термических поражений глаз особое значение приобрели работы в то время П. И. Лебехова, П. В. Преображенского, выполненные под руководством Б. Л. Поляка. Параллельно велись исследования, касающиеся ожогов глаз под руководством Н. А. Пугковской в Украинском научно-исследовательском институте глазных болезней и тканевой терапии. В Москве разрабатывались методы диагностики и лечения отслойки сетчатки (М. Ю. Розенблюм, Р. А. Гаркави). В 70-е гг. XX в. на первый план среди офтальмологических проблем наряду с травматическими поражениями глаз выходит глаукома – как одна из главных причин слепоты. Проводится массовая диспансеризация населения, инициатором которой был Б. В. Про-токопов, осуществляются исследования по изучению патологии и методов диагностики глаукомы (М. Я. Фрадкин, М. Б. Вур-гафт, А. Я. Виленкина, В. И. Козлов и др.), разрабатываются новые операции, в частности на микрохирургическом уровне, готовятся профессиональные кадры. За проведение работ в этой области офтальмологии профессорам Г. И. Ерошевско-му, М. М. Краснову и А. П. Нестерову была присуждена Государственная премия СССР. Офтальмохирургические отделения и центры развиваются в отдаленных регионах России: во Владивостоке (М. В. Зайко-ва), в Новосибирске (А. А. Колен), в Красноярске (М. А. Дмитриев, П. Г. Макаров), Иркутске (З. Г. Франк-Каменецкий), Свердловске (Р. Х. Микаэлян), Перми (И. Г. Ершкович и Н. Г. Гольфельд), Краснодаре (С. В. Очаковский, Н. А. Юшко), Астрахани (Н. И. Артемьев) и др. В этих преобразованиях заметную роль сыграл член-корреспондент АМН СССР, герой Социалистического Труда, профессор Т. И. Ерошевский, создавший представительную школу офтальмологов. Ученики Т. И. Ерошевского возглавили кафедры глазных болезней во многих городах страны: В. Г. Абрамов в г. Иванове, А. П. Нестеров в Казани, а затем в Москве, С. Н. Федоров в Архангельске, а затем в Москве, А. А. Бочка-рева в Ростове-на-Дону, С. Е. Стукалов в Воронеже, Н. М. Са-вушкина в Чите и многие другие. Продолжая исследования, которые проводили его учителя К. А. Юдин и В. П. Филатов, Т. И. Ерошевский много внимания уделял изучению проблем кератопластики и консервирования роговицы. Т. И. Ерошевский был первым офтальмологом в СССР, успешно проводившим хирургическое лечение врожденной глаукомы у детей с помощью гониопунктуры. Один из учеников Т. И. Ерошевского, академик РАМН и РАЕН, член-корреспондент РАН, профессор, Герой Социалистического Труда С. Н. Федоров (1927–2000) занимает особое место в истории не только советской, но и мировой офтальмологии. С. Н. Федоров дал импульс развитию сразу нескольких направлений, без которых немыслима современная офтальмология. Он способствовал широкому распространению в нашей стране и за рубежом операций по имплантации искусственного хрусталика после удаления катаракты, усовершенствовал эту операцию и сделал ее массовой. Труды С. Н. Федорова по проблемам кератопротезирования, глаукомы, атрофий зрительного нерва, витреоретинальной хирургии стали классикой мировой офтальмологии. Он – основоположник рефракционной и лазерной хирургии в офтальмологии. В советский период при бесплатной медицинской помощи в клинике, которую возглавлял С. Н. Федоров, производили около 600 операций в день. В конце 1985 г. в СССР для быстрого и эффективного внедрения передовых технологий были созданы межотраслевые научно-технические комплексы в разных областях науки и отраслях промышленности. С. Н. Федоров возглавил межотраслевой научно-технический комплекс (МНТК) «Микрохирургия глаза», который в настоящее время носит его имя, организовал в 12 городах России филиалы, ставшие центрами микрохирургии в регионах. Следует отметить, что постсоветский период в истории развития офтальмологии характеризуется рядом особенностей – ослабли связи с коллегами из республик бывшего Советского Союза, в Россию «ворвались» мощные зарубежные фирмы, заполонив фармацевтический рынок дорогими лекарственными препаратами, контактными линзами, очками; возникла обширная сеть мелких частных клиник. В новой системе организации здравоохранения значительный ущерб был нанесен профилактической направленности медицины, в том числе в офтальмологии. Несмотря на это, развитие научных исследований и создание новых хирургических технологий продолжается: совершенствуется методика применения ультразвука при операциях на глазу; создана технология лазерного удаления катаракты с введением в полость глаза эластичных хрусталиков через небольшие разрезы, не требующие герметизации их швами. Ранняя диагностика глаукомы стала реальностью благодаря использованию современных технологий исследования глазного дна при сканирующей лазерной офтальмоскопии и рент-генотомографии. Ученые проводят исследования с целью изучения проблемы аутотканевых конфликтов, возникающих внутри глаза при некоторых врожденных и приобретенных заболеваниях. Появляются казавшиеся ранее фантастическими проекты пересадки сетчатки, вживления электродов в затылочные доли коры головного мозга с целью создания особого электронного зрения безнадежно слепым больным. При этом в качестве рецепторов света и проводников поглощенной фотоэнергии используют ультразвуковые датчики и телевизионные системы. ЧАСТЬ I АНАТОМИЯ И ФИЗИОЛОГИЯ ОРГАНА ЗРЕНИЯ СВЯЗЬ ОРГАНА ЗРЕНИЯ С ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМОЙ И ОРГАНИЗМОМ В ЦЕЛОМ ГЛАВА 1 АНАТОМО-ФИЗИОЛОГИЧЕСКИЙ ОЧЕРК ОРГАНА ЗРЕНИЯ О ЗРИТЕЛЬНОМ АНАЛИЗАТОРЕ Зрительный анализатор состоит из трех отделов: 1) периферического, рецепторного; 2) проводящих путей; 3) подкорковых и корковых центров. Периферический отдел зрительного анализатора представлен сетчаткой, в которой световая энергия преобразуется в нервное возбуждение и далее передается по нервным путям в центральный отдел зрительного анализатора – к затылочной доле коры головного мозга, где и воспринимается как зрительный образ. Глазное яблоко относится к числу дистантных рецепторов, позволяющих организму воспринимать воздействие окружающего мира на расстоянии. К дистантным рецепторам принадлежат также орган слуха и орган обоняния. Орган зрения состоит из глазного яблока и окружающих его вспомогательных органов. Глазное яблоко, являясь периферической частью зрительного анализатора, обеспечивает восприятие формы, величины, направления движения, удаленности, пространственного соотношения и свойств предметов; анализ светового изменения окружающей среды и формирует зрительные ощущения и образы. Большая часть информации о внешней среде поступает через орган зрения. Зрительное восприятие позволяет сохранять и поддерживать позы и другие сложные координированные процессы. Таким образом, весь окружающий мир познается человеком с помощью органов чувств, одним из которых является орган зрения. Глаз дает возможность полноценно познавать мир. Посредством зрения мы получаем о внешнем мире больше знаний, чем с помощью остальных органов чувств, вместе взятых. От 4/5 до 9/10 информации поступает человеку через органы зрения. Орган зрения важен для визуального изучения не только земных явлений, но и космоса. В отличие от других органов чувств, глаз формировался как под влиянием жизни на Земле, так и под воздействием космических лучей. Поэтому глаз человека – единственный из органов чувств, позволяющий космонавту ориентироваться в космосе. Неудивительно, что всякое заболевание глаз, ведущее к снижению зрения и тем более к слепоте – огромное несчастье для человека. Более того, оно приобретает определенную общественную значимость, так как выключает порой еще достаточно молодого, здорового и работоспособного человека из трудовой деятельности. Помимо этого, глаз нередко отражает состояние всего организма и в указанном смысле является не только зеркалом души, но и зеркалом патологии, болезней. Именно глаз служит одним из наиболее ярких доказательств павловского положения о целостности организма. Большинство глазных заболеваний представляют собой проявления разнообразных общих патологических процессов, а некоторые изменения органа зрения позволяют судить о состоянии организма в целом и его отдельных органов и систем. Орган зрения тесно связан с головным мозгом. Зрительный нерв – единственный из нервов, доступный прижизненному визуальному наблюдению, а сетчатая оболочка – по сути дела часть мозга, вынесенная на периферию. Отсюда по состоянию зрительного нерва, сетчатки, ее сосудов можно в определенной степени судить о состоянии оболочек, вещества мозга и его сосудистой системы. Орган зрения играет важную роль не только в познании внешнего мира, но и в развитии организма в целом, начиная с периода новорожденности. Дело в том, что глаз – важнейшая составная часть так называемой оптико-вегетативной (ОВС) или фотоэнергетической системы (ФЭС) организма: глаз – гипоталамус – гипофиз. Глаз необходим не только для зрения, но и для восприятия световой энергии как возбудителя нейрогуморальной активности гипоталамуса и гипофиза, поскольку световое раздражение возбуждает не одни лишь зрительные центры, но центры межуточного мозга – его гипоталамо-гипофизарный аппарат. Благодаря стимулирующему действию света через глаз на гипофиз во внутренней среде организма появляются гормоны ряда эндокринных желез: гипофиза, надпочечников, щитовидной, половых и других желез. Доказана возможность развития ряда вегетативных симптомов и синдромов, с одной стороны, в связи с патологией исходного пункта ФЭС – глаза, а с другой – вследствие поражения ее центрального отдела. Окулове-гетативная система (ОВС, ФЭС) является самым коротким из всех известных путей, связывающих центральный регулятор-ный аппарат вегетативной нервной системы с внешней средой, воспринимающих ее воздействия в виде лучистой энергии. Новорожденный нуждается в совершенной и быстрой адаптации к внешним условиям для правильного развития и роста, что в большей мере обусловлено безупречным функционированием ФЭС. Необходимость в быстрой адаптации ведет, прежде всего, к наиболее быстрому формированию зрительного анализатора. Рост и развитие глаза у ребенка в основном завершается к 2–3 годам, а в последующие 15–20 лет глаз изменяется меньше, чем за первые 1–2 года. Главным условием развития глаза является свет. Известно, что поверхности Земли достигают лучи света с длиной волны 799,4-393,4 нм. Глаз чувствителен именно к указанному диапазону длин волн. Максимум ясного видения глаза находится в желто-зеленой части спектра с длиной волны 556 нм. Ультрафиолетовые лучи можно видеть, если они интенсивны. Ограничено восприятие глазом и инфракрасных лучей с длиной волны более 800 нм, поскольку лучи с большей длиной волны также поглощаются средами глаза. ЭВОЛЮЦИЯ ОРГАНА ЗРЕНИЯ В ходе филогенетического развития организмов под влиянием условий внешней среды орган зрения претерпел большие изменения. Из примитивного органа зрения, который состоит из светочувствительных клеток, располагающихся в наружных покровах организма, он превратился в сложный зрительный анализатор высших позвоночных. Уже некоторым одноклеточным животным и растительным организмам присуща светочувствительность: реагирует вся протоплазма. У растений реакция на свет выражается в положительном гелиотропизме. Всем известно, как в течение дня поворачивается к солнцу головка подсолнечника. У бактерий эта реакция проявляется в отрицательном фототропизме: размножение культур бактерий особенно энергично в тех местах чашек Петри, которые затемнены бумажками, наклеенными на крышку. В процессе эволюционного развития на поверхности соприкосновения организма с внешней средой возникают светочувствительные клетки. Простейший вид органа зрения встречается у дождевого червя. Это эпителиальная клетка, соединенная с нервным волокном. Нервное волокно передает возбуждение клетки нервному узлу, раздражение которого вызывает двигательную реакцию животного. Светочувствительные клетки у дождевого червя рассеяны по всей поверхности тела среди клеток эпидермиса. У более развитых организмов светочувствительные клетки концентрируются в определенных местах. В глазу пиявки, например, они объединены в группы по 5–6 клеток, но еще лежат в одной плоскости с покровом тела и только с внутренней стороны отграничиваются прослойкой темного пигмента в форме чашечки или бокала. Дальнейшее усложнение органа зрения приводит к перемещению зрительных клеток с поверхности эпидермиса вглубь. Появляются зрительные углубления или ямки. Такие глаза встречаются у морских звезд и улиток. В глазах морской звезды можно уже видеть начальную структуру нейроэпителия, который обращен световоспринимающим концом к свету. Нервные волокна, отходящие от светочувствительных клеток – прообраза будущей сетчатки – собираются в один широкий и рыхлый тяж. С поверхности глаз имеет форму ямки, которая покрыта покровным эпителием. Число «зрительных» клеток в ней достигает 20–25. Морские звезды и улитки не только различно реагируют на свет и темноту, как дождевой червь, но способны различать и направление света. Образование входного отверстия для световых лучей и расширение полости, выстланной «зрительными» клетками, придают глазу пузыреобразную форму, как, например, у кольчатых червей. У кольчатых червей световоспринимающие концы рецепторных клеток так же, как и у улиток, обращены к свету, но по сравнению с глазами улиток у них отмечается более четкое отражение от эпидермальных клеток соседней ткани. Полость глаза заполнена прозрачной массой, в которой можно видеть прототип стекловидного тела. На этом уровне развития глаз – не только орган светоощущения, но и орган видения форм. Во всех описанных выше глазах светоощущающие концевые аппараты светочувствительных рецепторных клеток направлены навстречу попадающему в глаз свету. Такой тип глаз называется конвертированным. В процессе филогенетического преобразования органа зрения возникает глаз, в котором светоощущающие концевые аппараты повернуты от света. Такой тип глаза называется инвертированным. Моллюск, стоящий еще на низкой ступени филогенетической лестницы, уже обладает таким инвертированным глазом. Его глаз напоминает глаз высших животных. В глазу моллюска имеется обособленный слой пигментного эпителия, к которому и обращены воспринимающие световое раздражение концы рецепторных клеток. В глазах моллюска появляется также простейшая преломляющая линза. У высших животных в связи с развитием высших отделов головного мозга центральный отдел зрительного анализатора перемещается в кору больших полушарий и приобретает способности к тончайшему анализу и синтезу. Одновременно происходит совершенствование глаза как оптической системы. РАЗВИТИЕ ГЛАЗА ЧЕЛОВЕКА Орган зрения претерпел эволюцию в ходе филогенетического развития живых существ, пройдя путь от группы светочувствительных клеток, способных отличать только свет от темноты (как у дождевого червя), до такого тонкого, сложного и специализированного органа, каким является глаз человека. Зачатки глаз появляются одновременно с эктодермальной бороздкой (еще до обособления мозговой трубки) вскоре после оплодотворения яйца. По бокам от средней линии экто-дермальной борозды, на верхушечном ее конце, образуются две ямки, обращенные дном прямо вниз. Это и есть будущие глаза. При замыкании эктодермальной борозды в мозговую трубку на месте ямок образуются выпячивания стенки первичного мозгового пузыря, которые принимают боковое направление (на второй неделе утробной жизни образуются так называемые первичные глазные пузыри – стадия первичного глазного пузыря). Полость их сообщается с полостью мозговой трубки очень короткой, вначале полой ножкой. Поверхность пузырей покрыта эктодермой, на которой в дальнейшем появляется утолщение – зачатки хрусталиков. По мере роста зародыша стадия первичного глазного пузыря сменяется стадией вторичного глазного пузыря, или глазного бокала. Образование его происходит вследствие асимметричного роста дорсальной и боковых частей и отставания в росте нижней и передней частей первичного глазного пузыря, что ведет к образованию вдавления, которое называется зародышевой щелью. Через нее в полость глазного бокала врастает мезодерма. К концу первого месяца утробной жизни зародышевая щель закрывается. Незарастание ее по всей длине или на отдельных участках является главной причиной тех аномалий развития, которые известны клинически как колобомы (дефекты) различных частей сосудистого тракта, зрительного нерва и др. Глазной бокал имеет двойную стенку (двуслойные). Наружные листки преобразуются в пигментный эпителий сетчаток, из внутренних развиваются собственно сетчатые оболочки, радужная и ресничная части сетчаток возникают из прорастающих впереди хрусталиков краев глазных бокалов. Внутренние стенки пузырей образуют также стекловидное тело. Глазные бокалы окружены мезенхимой. Последняя через зародышевую щель, имеющуюся в нижней части каждого из бокалов, входит внутрь их, образуя артерию стекловидного тела и сосудистую сумку хрусталика, которые на пятом месяце утробной жизни (сосуды стекловидного тела начинают исчезать), а на седьмом – девятом месяце исчезает артерия стекловидного тела и одновременно редуцируется сосудистая сумка хрусталика. Мезенхимальное происхождение имеют также склера, роговица (в образовании последней участвует, кроме того, наружная эктодерма) и сосудистый тракт глаза. В мезенхиме, прорастающей между эктодермой и хрусталиком, появляется щель – передняя камера глаза. Передняя камера в виде узкой щели между зачатком радужки и роговицей появляется на пятом месяце утробной жизни. Из непигментированного эпителия плоской части цилиарного тела начинается образование эктодермального остова стекловидного тела, которое и заполняет полость глаза на восьмом – девятом месяцах эмбриональной жизни, как бы вытесняя эмбриональное стекловидное тело. Через зародышевую щель сетчатка осевыми цилиндрами ган-глиозных клеток связана с ножкой глазного пузыря, которая впоследствии превращается в зрительный нерв. Таким образом, эмбриональное развитие глаза доказывает уже высказанное положение о том, что он является по существу периферической частью головного мозга. АНАТОМИЧЕСКОЕ УСТРОЙСТВО ОРГАНА ЗРЕНИЯ Для удобства изучения орган зрения можно разделить на три части: 1) глазное яблоко; 2) вместилище глаза и защитный аппарат – орбита и веки; 3) придатки глаза – двигательный и слезный аппарат. Вместилищем глазных яблок являются костные впадины лицевого черепа – глазницы (орбиты). Это парное образование в виде углублений в передней части черепа, напоминающих четырехгранные пирамиды, вершины которых направлены кзади и несколько вовнутрь. Объем глазницы взрослого человека составляет около 30 см . Глубина орбиты колеблется в пределах 4–5 см, вертикальный размер равняется в среднем 3,5 см, горизонтальный – 4 см. Однако таких размеров глазницы достигают к 8-10 летнему возрасту. Характерные особенности глазниц новорожденного – превышение горизонтального размера над вертикальным, меньшая глубина орбит и меньшая конвергенция их осей, что создает порой видимость сходящегося косоглазия. В глазнице различают четыре стенки: верхнюю, внутреннюю, нижнюю, наружную. Они образованы семью костями лицевого черепа. Наиболее прочная из них наружная – она толще других и граничит с окружающей средой. Остальные стенки глазницы служат одновременно и стенками придаточных полостей носа: верхняя – нижней стенкой лобной пазухи, нижняя – верхней стенкой гайморовой полости, внутренняя – боковой стенкой решетчатого лабиринта. Патологическое состояние названных полостей нередко лежит в основе заболеваний глазницы и глазного яблока. В глазнице имеются два отверстия: зрительное – через него в полость черепа выходит из глаза зрительный нерв, а в орбиту вступает глазная артерия, отходящая в полость черепа от внутренней сонной артерии, и круглое – через него проходит верхнечелюстной нерв (вторая ветвь тройничного нерва); а также две щели: верхнеглазничная и нижнеглазничная. Последняя соединяет глазницу с крылонебной ямкой, через щель идут нижнеорбитальная артерия и одноименный нерв. Щель закрыта соединительно-тканной перепонкой с гладкими мышечными волокнами, иннервируемыми симпатическим нервом. Повышение или понижение тонуса мышцы может влиять на положение глаза, вызывая экзо – или экофтальм (выпячивание или западение). Верхнеглазничная щель соединяет орбиту со средней черепной ямкой. Через щель проходят все двигательные нервы глазного яблока: глазодвигательный (п. оси1ото1опи8), блоковый (п. ггосЫеат), отводящий (п. аЪскшсепк), а также первая ветвь тройничного нерва (п. орШакшсик) и верхнеглазная вена (V. огЪИаИк кирепог). Патологические процессы, развивающиеся в этой области (орбите или в средней черепной ямке), вызывают характерную картину, получившую название синдрома верхнеглазничной щели. Он проявляется опущением верхнего века (птоз), полной неподвижностью глазного яблока (наружная офтальмоплегия), отсутствием аккомодации, расширением зрачка (внутренняя офтальмоплегия), анестезией роговицы и кожи век в области разветвления глазного нерва, некоторым экзофтальмом. Перечисленные симптомы обусловлены сдавлением или повреждением проходящих через щель анатомических образований. Неподвижность глаза называется наружной офтальмоплегией, так как она связана с парезом или параличом наружных глазодвигательных мышц. Парез или паралич внутренних глазных мышц – ресничных и зрачковых – называются внутренней офтальмоплегией, неподвижность наружных и внутренних мышц – тотальной офтальмоплегией. Глазница выстлана надкостницей. В костном канале зрительного нерва надкостница переходит в твердую мозговую оболочку, окружающую зрительный нерв. Из других костных анатомических образований в орбите следует назвать блок в ее верхневнутреннем углу – костный шип, через который перекидывается сухожилие верхней косой мышцы, он может быть прощупан в собственной глазнице. Глазница содержит глазное яблоко, клетчатку, фасции, мышцы, сосуды, нервы. Клетчатка пронизана пластинками соединительной ткани, исходящими из надкостницы орбиты. У заднего полюса глаза поверхность жира покрыта плотной фиброзной фасцией, которая называется теноковой. Веки ограничивают глазную щель, которая имеет размер 30 х 10–14 мм. Такой она становится к 8-10 годам, у новорожденных глазная щель примерно в два раза уже, чем у взрослых. Веки относятся к так называемым придаточным частям органа зрения и вместе с тем к защитному аппарату глаза. Они представляют собой две кожные складки, которые с конца второго месяца утробной жизни начинают расти навстречу друг другу. Развивающиеся веки вскоре срастаются свободными краями, но к концу 7-го месяца жизни разъединяются вновь и образуют глазную щель. У некоторых животных веки раскрываются после рождения. Свободные края верхнего и нижнего век соединяются наружной и внутренней спайками, причем в наружной части под острым углом. У внутреннего угла края век меняют сходящееся направление и образуют подковообразный изгиб. Пространство, ограниченное им, называется слезным озером, где медиально расположено слезное мясцо. Оно представляет собой остаток кожи с сальными железками и тонкими волосиками. Кнаружи от слезного мясца имеется полулунная складка слизистой оболочки – зачаточное третье веко. У животных третье веко – защитный орган для глаза. В слезное озеро погружаются слезные точки, которыми начинаются слезоотводящие пути. Слезных точек две – нижняя и верхняя. Они располагаются на краю нижнего и верхнего век, около внутреннего угла глаза, на вершине слезных сосочков. Слезные точки переходят в слезные канальцы, впадающие в слезный мешок. Последний через слезно-носовой канал открывается в носовую полость под нижней носовой раковиной. Веки состоят из четырех слоев: кожи, мышц, соединительной ткани (обычно называемой хрящом) и слизистой оболочки, или конъюнктивы. Кожа век тонкая, нежная, иннервирует-ся волокнами тройничного нерва. Под ней располагается рыхлая ткань, лишенная жира. Это способствует почти беспрепятственному образованию отеков и гематом под кожей век, особенно у детей. Мышечный слой представлен круговой мышцей, состоящей из орбитальной и пальпебральной частей. При сокращении первой происходит сильное смыкание век, при сокращении второй – мигание. Круговая мышца век (т. огЫси1ап8 осиЦ) иннервируется лицевым нервом, ее чувствительная иннервация осуществляется волокнами первой (верхнее веко) и второй (нижнее веко) ветвей тройничного нерва. Под мышцей расположен соединительно-тканный слой в виде выпуклой кпереди пластинки длиной около 30 мм и шириной около 6 мм (нижний хрящ) и 10 мм (верхний). В прямом слое имеются мейболиевы железы (до 30), открывающиеся по краю века и выделяющие секрет, препятствующий мацерации. От места соединения верхнего и нижнего хрящей к надкостнице наружного и внутреннего краев орбиты тянутся плотные тяжи – наружная и внутренняя спайки век. Края век ограничены двумя ребрами: задним – острым, прилегающим к передней поверхности глазного яблока и препятствующим заворачиванию века внутрь, и передним – закругленным, несущим ресницы (до 150 на верхнем и до 70 на нижнем веках). Пространство между ребрами – межреберное пространство имеет ширину до 2 мм. В нем отчетливо видна сероватая полоска – выход протоков мейболиевых железок. Верхнее веко поднимается леватором, лежащим в основном под круговой мышцей век. Волокна леватора вплетаются в слизистую оболочку, в круговую мышцу и кожу века. Иннервиру-ется леватор глазодвигательным нервом. Кроме леватора в поднимании верхнего века участвует мышца Мюллера, получающая симпатическую иннервацию. Эта мышца представлена и на нижнем веке. Паралич мюллеровой мышцы приводит к небольшому птозу (опущению верхнего века), который входит, в частности, в имптомокомплекс Горнера: птоз, миоз, эпофтальм. С повышением тонуса мюллеровых и орбитальных мышц в значительной степени связана картина экзофтальма при базедовой болезни. Внутренняя поверхность век, как и передняя поверхность глазного яблока, выстлана конъюнктивой, или слизистой оболочкой. Вместе они образуют конъюнктивальный мешок при сомкнутых веках. Конъюнктива делится на три отдела: слизистую век, глазного яблока и переходные (верхняя и нижняя) складки или своды. Наличие в сводах «лишней» конъюнктивы, собирающейся в складки, обеспечивает возможность беспрепятственного движения глазного яблока в пределах глазной щели. Различные части конъюнктивы отличаются друг от друга не только по названию, но и по строению. Слизистая глазного яблока покрыта многослойным плоским неороговевающим эпителием, который в отличие от под-эпителиального слоя не заканчивается у лимба, а переходит на роговицу. Таким образом, эпителий роговой оболочки – часть эпителия конъюнктивы глазного яблока. Эпителий задней поверхности век – многослойный цилиндрический, с наличием бокаловидных, продуцирующих слизь клеток. Эпителий сводов – тоже в основном цилиндрический, но здесь имеются и клетки плоского эпителия: в сводах осуществляется постепенный переход от одного вида эпителия к другому. Цилиндрический эпителий делает конъюнктиву мягкой, и при ее соприкосновении с роговицей во время мигания не возникает ощущения трения, несмотря на высокую чувствительность роговой оболочки. В случае изменения эпителия (когда он становится утолщенным за счет воспаления) появляются жалобы на «сухость» глаза, «ощущение песка» в глазу и т. д. Под эпителием располагается слой рыхлой аденоидной ткани с наличием лимфоидных клеток, из которых при воспалении образуются фолликулы (зерна). Этот слой особенно развит у детей (с возрастом лимфоидная ткань в значительной степени подвергается обратному развитию). В нормальных условиях конъюнктива представляется тонкой (0,2–0,3 мм), прозрачной, гладкой, розовой, блестящей, влажной тканью с наличием небольшого числа фолликулов, без рубцов и отделяемого. Гладкость слизистой нарушается лишь в области углов век, на хрящах, где она становится несколько шероховатой вследствие расположенных здесь мелких сосочков. При воспалении конъюнктивы число сосочков и их размеры увеличиваются. Кровоснабжение век осуществляется из системы внутренней сонной артерии – за счет наружных ветвей слезной и внутренних ветвей передней решетчатой артерий. Сосуды идут навстречу друг другу, анастомозируют и в 3 мм от края век образуют артериальные дуги. Отток крови происходит по одноименным векам, впадающим в вены лица и глазницы. Лимфо-отток направлен в основном к предушному лимфатическому узлу. Конъюнктива питается как за счет кровеносных веточек, берущих начало из сосудов век (стволики прободают хрящи и выходят на их заднюю поверхность), так и за счет веточек из передних ресничных сосудов. В строении сосудистой системы слизистой оболочки можно отметить наличие в ней поверхностных и глубоких сосудов. Последние располагаются в эпискле-ральной ткани и глубоких слоях слизистой глазного яблока вокруг роговицы, образуя краевую петлистую, или перипори-сальную сеть, которая при осмотре глаза спереди не видна. Знание двух систем кровоснабжения (поверхностной и глубокой) имеет практическое значение: при поверхностных воспалительных процессах (в конъюнктиве) реагируют (расширяются) поверхностные, конъюнктивальные сосуды. А при глубоких (в роговице, радужке, ресничном теле) – перикорнеальные, глубокие сосуды. Лимфатические сосуды конъюнктивы от ее височной половины идут к предушному узлу, от носовой – к подчелюстному. Чувствительная иннервация слизистой оболочки осуществляется за счет волокон первой и второй ветвей тройничного нерва. ПРИДАТКИ ГЛАЗА (СЛЕЗНЫЙ И ДВИГАТЕЛЬНЫЙ АППАРАТ) Слезные органы представлены слезообразующим и слезо-отводящим аппаратами. К первому относятся слезная железа, расположенная в ямке соответствующего названия под верхненаружным краем глазницы, позади тарзоорбитальной фасции, и разбросанные в толще слизистой добавочные слезные железки Краузе (около 20). Слезная железа разделяется сухожилием мышцы, поднимающей верхнее веко, на орбитальную и пальпебральную части. Пальпебральная часть железы, меньшая по размерам, расположена несколько выше темпорального отдела верхней переходной складки конъюнктивы. В верхний конъюнктивальный свод выходят протоки (около 10) основной железы и множества мелких добавочных слезных желез Краузе и Вольфринга. Слезная железа иннервируется одноименным нервом – веточкой тройничного нерва, к которой присоединяются секреторные волокна, идущие от лицевого нерва. В обычных условиях слезная железа почти не функционирует, для омывания передней поверхности глазного яблока хватает слезы, вырабатываемой добавочными железками. Слезная железа вступает в действие при плаче, раздражении роговицы и конъюнктивы, при эмоциональных состояниях – горе, радости, боли. В спокойном состоянии у человека в сутки выделяется примерно 1 мл слезы. Слеза – прозрачная, содержащая 98 % воды жидкость с плотностью 1,001-1,008. Кроме воды, в слезе содержатся белок, сахар, натрий, мочевина и другие вещества, важным из которых является лизоцим, обладающий бактерицидными свойствами (лизоцим искусственно получают из яичного белка). Поступающая в конъюнктивальный свод слезная жидкость благодаря мигательным движениям равномерно распределяется по поверхности глазного яблока и затем собирается в узком пространстве между нижним веком и глазным яблоком – слезном ручье, откуда она направляется в слезное озеро, в которое погружены верхняя и нижняя слезные точки, расположенные на вершинах слезных сосочков век. Из слезных точек слеза поступает в верхний и нижний слезные канальцы, которые (либо порознь, либо соединяясь в один общий каналец) впадают в слезный мешок. Слезный мешок (озеро) располагается вне полости орбиты у ее внутреннего угла в костной ямке, которая соединяется со слезно-носовым каналом, открывающимся в нижний носовой ход снаружи от нижней носовой раковины. В отведении слезной жидкости активную роль играет присасывающее действие капиллярного просвета слезных точек и канальцев, а также сокращение и расслабление мышцы Гор-нера (часть круговой мышцы глаза), которая охватывает слезный мешок, и вместе они действуют как своеобразный насос. Активное участие в слезообразовании принимают и различные клапаны в слезоотводящих путях – складки слизистой оболочки. Самая большая из них, расположенная у дистального конца слезно – носового канала, складка Хаснера, у новорожденных может закрывать канал и быть причиной хронического дакриоцистита (воспаление слезного мешка). Врожденное отсутствие или недоразвитие клапанов в слезоотводящих путях может объяснять способность некоторых лиц при курении выпускать дым из просвета слезных точек. При рождении у ребенка в большинстве случаев слезоотво-дящие пути уже сформированы и проходимы. Однако примерно у 5 % новорожденных нижнее отверстие носослезного канала открывается позже или самостоятельно вообще не открывается, что является причиной развития у них дакриоцистита. Что касается слезопродуцирующего аппарата, то он начинает функционировать обычно ко второму месяцу жизни ребенка, когда полного развития достигают железистый аппарат и его иннервация. У некоторых детей слезоотделение обнаруживается сразу после рождения. Кровообращение слезной железы осуществляется из слезной артерии: отток крови происходит в глазную вену. Лимфатические сосуды от слезной железы идут в предушные лимфатические узлы. Иннервация слезной железы сложная и осуществляется за счет ветвей тройничного и лицевого нервов, а также симпатическими нервными волокнами от верхнего шейного симпатического узла. ГЛАВА 2 АНАТОМИЧЕСКОЕ СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА Глазное яблоко имеет сложное строение. Оно состоит из трех оболочек и содержимого. Наружная оболочка глазного яблока представлена роговии цей и склерой. Средняя (сосудистая) оболочка глазного яблока состоит из трех отделов – радужки, цилиарного тела и хориоидеи. Все три отдела сосудистой оболочки глаза объединяют еще под одд ним названием – увеальный тракт (tractus uvealis). Внутренняя оболочка глазного яблока представлена сетт чаткой (retina), которая представляет собой светочувствительь ный аппарат. К содержимому глазного яблока относятся стекловидное тело (corpus vitreum), хрусталик или линза (lens), а также водяя нистая влага передней и задней камер глаза (humor aquaeus) – светопреломляющий аппарат. Глазное яблоко новорожденноо го представляется почти шаровидным образованием, его масса приблизительно 3 г, средний (переднезадний) размер 16,2 мм. По мере развития ребенка глазное яблоко увеличивается, осоо бенно быстро в течение первого года жизни, и к пятилетнему возрасту оно незначительно отличается от размеров взрослоо го. К 12–15 годам (по некоторым данным, к 20–25 годам) его рост завершается и размеры составляют 24 мм (сагиттальный), 23мм (горизонтальный и вертикальный) при массе 7–8 г. Наружная оболочка глазного яблока, 5/6 которой составв ляет непрозрачная фиброзная оболочка, называется склерой. В передней части склера переходит в прозрачную ткань – роговицу. Роговица – прозрачная, бессосудистая ткань, своеобразное «окошко» в наружной капсуле глаза. Функция роговой обоо лочки – преломление и проведение лучей света и защита соодержимого глазного яблока от неблагоприятных внешних воздействий. Сила преломления роговой оболочки почти в 2,5 раза больше, чем у хрусталика, и составляет в среднем около 43,0 Д. Ее диаметр 11–11,5 мм, причем вертикальный размер несколько меньше горизонтального. Толщина роговой оболочки колеблется от 0,5–0,6 мм (в центре) до 1,0 мм. Диаметр роговицы новорожденного равен в среднем 9 мм, к пятилетнему возрасту роговая оболочка достигает 11 мм. Благодаря своей выпуклости роговица обладает высокой преломляющей способностью. Кроме того, роговица имеет высокую чувствительность (за счет волокон глазного нерва, являющегося веточкой тройничного нерва), но у новорожденного она низкая и достигает уровня чувствительности взрослого приблизительно к году жизни ребенка. В норме роговая оболочка прозрачная, гладкая, блестящая, сферичная и высокочувствительная ткань. Высокая чувствительность роговицы к механическим, физическим и химическим воздействиям, наряду с ее высокой прочностью, обеспечивает эффективную защитную функцию. Раздражение чувствительных нервных окончаний, расположенных под эпителием роговой оболочки и между его клетками, приводит к рефлекторному сжатию век, обеспечивая защиту глазного яблока от неблагоприятных внешних воздействий. Этот механизм срабатывает всего за 0,1 с. Роговая оболочка состоит из пяти слоев: переднего эпителия, боуменовой мембраны, стромы, десцеметовой мембраны и заднего эпителия (эндотелий). Самый наружный слой представлен многослойным, плоским, неороговевающим эпителием, состоящим из 5–6 слоев клеток, который переходит в эпителий конъюнктивы глазного яблока. Передний роговичный эпителий является хорошим барьером для инфекций, и обычно необходимо механическое повреждение роговицы для того, чтобы инфекционный процесс распространялся внутрь роговой оболочки. Передний эпителий обладает очень хорошей регенеративной способностью – требуется менее суток для полного восстановления эпителиального покрова роговицы в случае его механического повреждения. За эпителием роговицы располагается уплотненная часть стромы – боуменова мембрана, устойчивая к механическим воздействиям. Большую часть толщи роговицы составляет строма (паренхима), которая состоит из множества тонких пластин, содержащих уплощенные клеточные ядра. К ее задней поверхности прилежит устойчивая к инфекции десцеметова мембрана, за которой расположен самый внутренний слой роговицы – задний эпителий (эндотелий). Он представляет собой один слой клеток и является основным барьером на пути поступления воды из влаги передней камеры. Таким образом, два слоя – передний и задний эпителий роговицы регулируют содержание воды в основном слое роговицы – ее строме. Питание роговой оболочки происходит за счет лимбальной сосудистой сети и влаги передней камеры глаза. В норме в роговице кровеносных сосудов нет. Прозрачность роговицы обеспечивается ее однородной структурой, отсутствием сосудов и строго определенным содержанием воды. Осмотическое давление слезной жидкости и влаги передней камеры больше, чем в ткани роговой оболочки. Поэтому излишек воды, поступающей из капилляров, расположенных вокруг роговицы в области лимба, удаляется в обоих направлениях – кнаружи и в переднюю камеру. Нарушение целости переднего или заднего эпителия приводит к «оводнению» ткани роговицы и потере ее прозрачности. Проникновение различных веществ внутрь глаза через роговицу происходит так: через передний эпителий проходят жирорастворимые вещества, а строма пропускает водорастворимые соединения. Таким образом, чтобы пройти через все слои роговицы, лекарственный препарат должен быть одновременно водо– и жирорастворимым. Место перехода роговой оболочки в склеру называется лимбом – это полупрозрачный ободок шириной около 0,75-1,0 мм. Он образуется в результате того, что роговица вставлена в склеру наподобие часового стекла, где сквозь непрозрачные слои склеры просвечивает прозрачная ткань роговицы, расположенная глубже. В толще лимба расположен шлеммов канал, поэтому многие хирургические вмешательства при глаукоме производятся именно в этом месте. Лимб служит хорошим ориентиром при выполнении хирургических вмешательств. Склера – белочная оболочка – состоит из плотных колла-геновых волокон. Толщина склеры взрослого колеблется от 0,5 до 1 мм, а у заднего полюса, в области выхода зрительного нерва – 1–1,5 мм. Склера новорожденного значительно тоньше и имеет голубоватый цвет в связи с просвечиванием через нее пигмента сосудистой оболочки. В склере много эластических волокон, вследствие чего она способна к значительному растяжению. С возрастом эта способность утрачивается, склера приобретает белый цвет, а у пожилых – желтоватый. Функции склеры – защитная и формообразующая. Самая тонкая часть склеры расположена в месте выхода зрительного нерва, где ее внутренние слои представляют собой решетчатую пластину, пронизанную пучками нервных волокон. Склера насыщена водой и непрозрачна. При резком обезвоживании организма, например при холере, на склере появляются темные пятна. Ее обезвоженная ткань становится прозрачной и через нее начинает просвечивать пигментированная сосудистая оболочка. Сквозь склеру проходят многочисленные нервы и сосуды. По ходу сосудов через ткань склеры могут прорастать внутриглазные опухоли. Средняя оболочка глазного яблока (сосудистая оболочка или увеальный тракт) состоит из трех частей: радужки, цилиар-ного тела и хориоидеи. Сосуды сосудистой оболочки, как и все сосуды глазного яблока, являются ветвями глазной артерии. Увеальный тракт выстилает всю внутреннюю поверхность склеры. Сосудистая оболочка прилежит к склере не вплотную: между ними находится более рыхлая ткань – супрахориои-дальная. Последняя богата щелями, в целом представляющими собой супрахориоидальное пространство. Радужка свое название получила за окраску, обусловливающую цвет глаз. Однако постоянная окраска радужной оболочки формируется лишь к двухлетнему возрасту ребенка. До этого она имеет голубой цвет из-за недостаточного количества пигментных клеток (хроматофоров) в переднем листке. Радужка является автоматической диафрагмой глаза. Это довольно тонкое образование толщиной всего 0,2–0,4 мм, причем самая тонкая часть радужки – место ее перехода в цилиар-ное тело. Здесь могут происходить отрывы радужки от своего корня при травмах. Радужка состоит из соединительно-тканной стромы и эпителиального заднего листка, представленного двумя слоями пигментированных клеток. Именно этот листок обеспечивает непрозрачность радужки и образует пигментную кайму зрачка. Спереди радужка, за исключением пространств между соединительно-тканными лакунами, покрыта эпителием, который переходит в задний эпителий (эндотелий) роговицы. Поэтому при воспалительных заболеваниях, захватывающих глубокие слои роговицы, в процесс вовлекается и радужная оболочка. В радужной оболочке содержится относительно небольшое количество чувствительных окончаний. Поэтому воспалительные заболевания радужки сопровождаются умеренным болевым синдромом. В строме радужной оболочки содержится большое количество клеток – хроматофоров, содержащих пигмент. Его количество определяет цвет глаз. При воспалительных заболеваниях радужки цвет глаз изменяется вследствие гиперемии ее сосудов (серая радужка становится зеленой, а карие приобретают «ржавый» оттенок). Нарушается, вследствие экссудации, и четкость рисунка радужки. Кровоснабжение радужки обеспечивают сосуды, расположенные вокруг роговицы, поэтому для заболеваний радужки характерна перикорнеальная инъекция (расширение сосудов). При заболеваниях радужки может появиться патологическая примесь во влаге передней камеры – кровь (гифема), фи-брии и гной (гикопион). Если фибриновый экссудат занимает область зрачка в виде пленки или многочисленных тяжей, образуются спайки между задней поверхностью радужки и передней поверхностью хрусталика – задние синехии, деформирующие зрачок. В центре радужной оболочки располагается круглое отверстие диаметром 3–3,5 мм – зрачок, который рефлекторно (под действием света, эмоций, при взгляде вдаль и т. д.) меняет величину, играя роль диафрагмы. Если в заднем листе радужки пигмент отсутствует (у альбиносов), то роль диафрагмы радужкой утрачивается, что ведет к снижению зрения. Величина зрачка изменяется под действием двух мышц – сфинктера и дилятатора. Кольцевидные волокна гладкой мышцы сфинктера, расположенные вокруг зрачка, иннерви-руются парасимпатическими волокнами, идущими с третьей парой черепно-мозговых нервов. Радиальные волокна гладкой мышцы, расположенные в периферической части радужки, иннервируются симпатическими волокнами от верхнего шейного симпатического узла. Благодаря сужению и расширению зрачка, поток световых лучей поддерживается на определенном уровне, что создает наиболее выгодные условия для акта зрения. Мышцы радужки у новорожденных и маленьких детей развиты слабо, особенно дилятатор (расширяющий зрачок), что затрудняет медикаментозное расширение зрачка. За радужной оболочкой располагается второй отдел увеаль-ного тракта – ресничное тело (цилиарное тело) – часть сосудистой оболочки глаза, идет от хориоидеи к корню радужной оболочки – кольцевидное, выступающее в полость глаза своеобразное утолщение сосудистого тракта, которое можно видеть только при разрезе глазного яблока. Ресничное тело выполняет две функции – продукцию внутриглазной жидкости и участие в акте аккомодации. Ресничное тело содержит одноименную мышцу, состоящую из волокон, имеющих различное направление. Основная (круговая) часть мышцы получает парасимпатическую иннервацию (из глазодвигательного нерва), радиальные волокна иннервируются симпатическим нервом. Ресничное тело состоит из отростчатой и плоской частей. Отростчатая часть цилиарного тела занимает зону примерно в 2 мм шириной, а плоская часть – около 4 мм. Таким образом, цилиарное тело заканчивается на расстоянии 6–6,5 мм от лимба. В более выпуклой отростчатой части насчитывается около 70 ресничных отростков, от которых к экватору хрусталика тянутся тонкие волокна связки Цинна, удерживая хрусталик в подвешенном состоянии. Как радужка, так и ресничное тело имеют обильную чувствительную (из первой ветви тройничного нерва) иннервацию, но в детском возрасте (до 7–8 лет) она развита недостаточно. В цилиарном теле различают два слоя – сосудистый (внутренний) и мышечный (наружный). Сосудистый слой наиболее выражен в области цилиарных отростков, которые покрыты двумя слоями эпителия, представляющим собой редуцированную сетчатку. Его наружный слой пигментирован, а внутренний пигмента не имеет, оба эти слоя продолжаются в виде двух слоев пигментированного эпителия, покрывающего заднюю поверхность радужки. Анатомические особенности ци-лиарного тела обусловливают некоторые симптомы при его патологии. Во-первых, цилиарное тело имеет тот же источник кровоснабжения, что и радужка (перикорнеальная сеть сосудов, которая образуется из передних цилиарных артерий, являющихся продолжением мышечных артерий, двух задних длинных артерий). Поэтому его воспаление (циклит), как правило, протекает одновременно с воспалением радужной оболочки (иридоциклит), при котором резко выражен болевой синдром, обусловленный большим количеством чувствительных нервных окончаний. Во-вторых, в цилиарном теле вырабатывается внутриглазная жидкость. В зависимости от количества этой жидкости может изменяться внутриглазное давление как в сторону его понижения, так и повышения. В-третьих, при воспалении цилиарного тела всегда нарушается аккомодация. Цилиарное тело – плоская часть ресничного тела – переходит в собственно сосудистую оболочку, или хориоидею – третий и самый обширный по поверхности отдел увеального тракта. Место перехода цилиарного тела в хориоидею соответствует зубчатой линии сетчатки. Хориоидея – задняя часть уве-ально-го тракта, располагается между сетчаткой и склерой и обеспечивает питание наружных слоев сетчатой оболочки. Она состоит из нескольких слоев сосудов. Непосредственно к сетчатке (ее пигментированному эпителию) прилегает слой широких хо-риокапилляров, который отделяется от нее тонкой мембраной Бруха. Затем располагается слой средних сосудов, преимущественно артериол, за которыми находится слой более крупных сосудов – венул. Между склерой и хориоидеей имеется пространство, в котором в основном проходят сосуды и нервы. В хо-риоидее, как и в других отделах увеального тракта, располагаются пигментные клетки. Хориоидея плотно сращена с другими тканями вокруг диска зрительного нерва. Кровоснабжение хориоидеи осуществляется из другого источника – задних коротких цилиарных артерий. Поэтому воспаление хориоидеи (хориоидит) чаще протекает изолированно от переднего отдела увеального тракта. При воспалительных заболеваниях хориоидеи в процесс всегда вовлекается прилегающая сетчатка и, в зависимости от локализации очага, возникают соответствующие нарушения зрительных функций. В отличие от радужки и цилиарного тела в хоиоидее нет чувствительных окончаний, поэтому ее заболевания протекают безболезненно. Кровоток в хориоидее замедленный, что способствует возникновению в этой части сосудистой оболочки глаза метастазов опухолей различной локализации и оседанию возбудителей различных инфекционных заболеваний. Внутренняя оболочка глазного яблока – сетчатка, самая внутренняя, самая сложная по строению и самая физиологически важная оболочка, представляющая собой начало, периферический отдел зрительного анализатора. За ним следуют, как в любом анализаторе, проводящие пути, подкорковые и корковые центры. Сетчатка представляет собой высокодифференцированную нервную ткань, предназначенную для восприятия световых раздражителей. От диска зрительного нерва до зубчатой линии располагается оптически деятельная часть сетчатки. Кпереди от зубчатой линии она редуцируется до двух слоев эпителия, покрывающих цилиарное тело и радужку. Эта часть сетчатки не участвует в акте зрения. Оптически деятельная сетчатка на всем протяжении функционально связана с прилежащей к ней хориоидеей, но сращена с ней только у зубчатой линии спереди и вокруг диска зрительного нерва и по краю желтого пятна сзади. Оптически недеятельный отдел сетчатки лежит кпереди от зубчатой линии и по существу не является сетчатой оболочкой – он теряет свое сложное строение и состоит только из двух слоев эпителия, выстилающих ресничное тело, заднюю поверхность радужки и образующих пигментную бахрому зрачка. В норме сетчатка представляет собой тонкую прозрачную оболочку толщиной около 0,4 мм. Самая тонкая ее часть находится в области зубчатой линии и в центре – в желтом пятне, где толщина сетчатки составляет всего 0,07-0,08 мм. Желтое пятно имеет тот же диаметр, что и диск зрительного нерва – 1,5 мм и располагается на 3,5 мм к виску и на 0,5 мм ниже диска зрительного нерва. Гистологически в сетчатке выделяют 10 слоев. В ней находятся и три нейрона зрительного пути: палочки и колбочки (первый), биполярные клетки (второй) и ганглионарные клетки (третий нейрон). Палочки и колбочки представляют собой рецепторную часть зрительного пути. Колбочки, основная масса которых сконцентрирована в области желтого пятна и, прежде всего, в его центральной части, обеспечивают остроту зрения и цветоощущение, а палочки, расположенные периферич-нее, – поле зрения и светоощущение. Палочки и колбочки располагаются в наружных слоях сетчатки, непосредственно у ее пигментного эпителия, к которому прилежит хориокапиллярный слой. Чтобы зрительные функции не страдали, необходима прозрачность всех других слоев сетчатки, расположенных перед фоторецепторными клетками. В сетчатке различают три нейрона, расположенных один за другим. Первый нейрон – нейроэпителий сетчатки с соответствующими ядрами. Второй нейрон – слой биполярных клеток, каждая его клетка контактирует с окончаниями нескольких клеток первого нейрона. Третий нейрон – слой ганглиозных клеток, каждая его клетка связана с несколькими клетками второго нейрона. От ганглиозных клеток отходят длинные отростки (аксоны), составляя слой нервных волокон. Они собираются в одном участке, образуя зрительный нерв – вторую пару черепных нервов. Зрительный нерв по существу, в отличие от других нервов, является белым веществом мозга, проводящим путем, выдвинутым в глазницу из полости черепа. Внутренняя поверхность глазного яблока, выстланная оптически деятельной частью сетчатки, получила название глазного дна. На глазном дне имеются два важных образования: желтое пятно, расположенное в области заднего полюса глазного яблока (название связано с наличием желтого пигмента при осмотре этого участка в бескрасном свете), и диск зрительного нерва – начало зрительного пути. Диск зрительного нерва представляется четко ограниченным бледно-розовым овалом диаметром 1,5–1,8 мм, расположенным примерно в 4 мм от желтого пятна. В области диска зрительного нерва сетчатка отсутствует, вследствие чего соответствующий этому месту участок глазного дна именуется также физиологическим слепым пятном, открытым Мариоттом (1663). Следует отметить, что у новорожденных диск зрительного нерва бледноват, с синевато-серым оттенком, что ошибочно может быть принято за атрофию. Из диска зрительного нерва выходит и ветвится на глазном дне центральная артерия сетчатки. В толщу зрительного нерва указанная артерия, отделившись в орбите от глазной, проникает в 10–12 мм от заднего полюса глаза. Артерия сопровождается веной соответствующего названия. Артериальные ветви по сравнению с венозными выглядят более светлыми и тонкими. Соотношение диаметра артерий к диаметру вен в норме у взрослых равняется 2: 3. У детей до 10 лет – 1: 2. Артерии и вены распространяются своими веточками по всей поверхности сетчатой оболочки, ее светочувствительный слой питается за счет хориокапиллярного отдела хориоидеи. Таким образом, питание сетчатки осуществляется из хо-риоидеи и собственной системы артериальных сосудов – центральной артериолы сетчатки и ее ветвей. Эта артериола является ветвью глазничной артерии, которая в свою очередь отходит от внутренней сонной артерии в полости черепа. Таким образом, осмотр глазного дна сосуды сетчатки позволяет узнать о свойствах сосудов головного мозга, имеющих тот же источник кровообращения – внутреннюю сонную артерию. Область желтого пятна снабжается кровью за счет хориоидеи, сосуды сетчатки здесь не проходят и не препятствуют лучам света попадать на фоторецепторы. В центральной ямке располагаются только колбочки, все остальные слои сетчатки оттеснены к периферии. Таким образом, в области желтого пятна лучи света попадают прямо на колбочки, что и обеспечивает высокую разрешающую способность этой зоны. Это обеспечивается еще и особым соотношением между клетками всех нейронов сетчатки: в центральной ямке на одну колбочку приходится одна биполярная клетка, а на каждую биполярную клетку – своя ганглионарная. Так обеспечивается «прямая» связь между фоторецепторами и зрительными центрами. На периферии сетчатки, наоборот, на несколько палочек приходится одна биполярная клетка, а на несколько биполярных – одна ганглионарная клетка, которая «суммирует» раздражение от определенного участка сетчатки. Такая суммация раздражений обеспечивает периферической части сетчатки исключительно высокую чувствительность к минимальному количеству света, попадающему в глаз человека. Начавшись на глазном дне в виде диска, зрительный нерв покидает глазное яблоко, затем глазницу и в области турецкого седла встречается с нервом второго глаза. Располагаясь в орбите, зрительный нерв имеет 8-образную форму, что исключает возможность натяжения его волокон при движениях глазного яблока. В костном канале глазницы нерв теряет твердую мозговую оболочку и остается покрытым паутиной и мягкой оболочкой. В турецком седле осуществляется неполный перекрест (внутренних половин) зрительных нервов, именуемый хиазмой. После частичного перекреста зрительные пути меняют свое название и обозначаются как зрительные тракты. Каждый из них несет в себе волокна от наружных отделов сетчатки глаза своей стороны и от внутренних отделов сетчатки второго глаза. Зрительные тракты направляются к подкорковым зрительным центрам – наружным коленчатым телам. От мультиполярных клеток коленчатых тел начинаются четвертые нейроны, которые в виде дивергирующих (правого и левого) пучков Граспо-ле проходят внутреннюю капсулу и заканчиваются в шпорных бороздках затылочных долей мозга. Таким образом, в каждой половине мозга представлены сетчатки обоих глаз, обусловливая соответствующую половину поля зрения, что позволило образно сравнивать систему управления со стороны мозга зрительными функциями с управлением ездоком парой лошадей, когда в правой руке ездока находятся вожжи от правой половины уздечек, а в левой – от левых. Волокна (аксоны) ганглиозных клеток сходятся, образуя зрительный нерв. Диск зрительного нерва состоит из пучков нервных волокон, поэтому эта область глазного дна не участвует в восприятии луча света и при исследовании поля зрения дает так называемое слепое пятно. Аксоны ганглиозных клеток внутри глазного яблока не имеют миелиновой оболочки, что обеспечивает прозрачность ткани. Патология сетчатки, за редким исключением, приводит к тем или иным нарушениям зрительных функций. Уже по тому, какая из них нарушена, можно предполагать, где находится очаг поражения. Например, у больного снижена острота зрения, нарушено цветоощущение при сохранившемся периферическом зрении и светоощущении. Естественно, в этом случае есть основания думать о патологии макулярной области сетчатки. В то же время при резком сужении поля зрения и цветоощущения логично предположить наличие изменений в периферических отделах сетчатки. В сетчатке нет чувствительных нервных окончаний, поэтому все заболевания протекают безболезненно. Сосуды, питающие сетчатку, проходят в глазное яблоко сзади, вблизи от места выхода зрительного нерва, и при ее воспалении видимой гиперемии глаза не бывает. Диагностика заболеваний сетчатки проводится на основании данных анамнеза, определения зрительных функций, прежде всего остроты зрения, поля зрения и темновой адаптации, а также офтальмоскопической картины. Зрительный нерв (одиннадцатая пара черепно-мозговых нервов) состоит примерно из 1 200 000 аксонов ганглиозных клеток сетчатки. На зрительный нерв приходится около 38 % всех афферентных и эфферентных нервных волокон, имеющихся во всех черепно-мозговых нервах. Различают четыре части зрительного нерва: интрабульбар-ную (внутриглазную), орбитальную, внутриканальцевую (внут-рикостную) и интракраниальную. Внутриглазная часть очень короткая (0,7 мм длиной). Диск зрительного нерва имеет всего 1,5 мм в диаметре и обусловливает физиологическую скотому – слепое пятно. В области диска зрительного нерва проходит центральная артерия и центральная вена сетчатки. Орбитальная часть зрительного нерва имеет длину 25–30 мм. Сразу же за глазным яблоком зрительный нерв становится значительно толще (4,5 мм), поскольку его волокна получают миелиновую обкладку, поддерживающую ткань – нейроглию, а весь зрительный нерв – мозговые оболочки, твердую, мягкую и паутинную, между которыми циркулирует цереброспинальная жидкость. Эти оболочки слепо оканчиваются у глазного яблока, и при повышении внутричерепного давления диск зрительного нерва становится отечным и приподнимается над уровнем сетчатки, грибовидно выпячиваясь в стекловидное тело. Возникает застойный диск зрительного нерва, характерный для опухолей головного мозга и других его заболеваний, сопровождающихся повышением внутричерепного давления. При повышении внутриглазного давления тонкая решетчатая пластинка склеры смещается кзади и образуется патологическое углубление в области диска зрительного нерва – так называемая глаукоматозная экспавация. Орбитальная часть зрительного нерва имеет длину 25–30 мм. В орбите зрительный нерв лежит свободно и делает 8-образный изгиб, что исключает его натяжение даже при значительных смещениях глазного яблока. В орбите зрительный нерв находится достаточно близко от придаточных пазух носа, поэтому при их воспалении могут возникать риногенные невриты. Внутри костного канала зрительный нерв проходит вместе с глазничной артерией. При утолщении и уплотнении ее стенки может происходить сдавление зрительного нерва, приводящее к постепенной атрофии его волокон. При переломах основания черепа зрительный нерв может быть сдавлен или пересечен костными обломками. Миелиновая оболочка зрительного нерва нередко вовлекается в патологический процесс при демиелинизирующих заболеваниях центральной нервной системы (рассеянный склероз), что также может привести к атрофии зрительного нерва. Внутри черепа волокна зрительных нервов обоих глаз совершают частичный перекрест, образуя хиазму. Волокна от носовых половин сетчаток перекрещиваются и переходят на противоположную сторону, а волокна от височных половин сетчаток продолжают свой ход, не пересекаясь. ЗРИТЕЛЬНЫЙ ПУТЬ И ПУТЬ ЗРАЧКОВОГО РЕФЛЕКСА Анатомическая структура зрительного пути достаточно сложна и включает в себя ряд нейронных звеньев. В пределах сетчатки каждого глаза – это слой палочек и колбочек (фоторецепторы – первый нейрон), затем слой биполярных (второй нейрон) и ганглиозных клеток с их длинными аксонами (третий нейрон). Все вместе они образуют периферическую часть зрительного анализатора. Проводящие пути представлены зрительными нервами, хиазмой и зрительными трактами. Последние оканчиваются в клетках наружного коленчатого тела, играющего роль первичного зрительного центра. От них берут начало уже волокна центрального нейрона зрительного пути, которые достигают области затылочной доли мозга. Здесь локализуется первичный кортикальный центр зрительного анализатора. Зрительный нерв образован аксонами ганглиозных клеток сетчатки и заканчивается в хиазме. Значительную часть нерва составляет глазничный отрезок, который в горизонтальной плоскости имеет 8-образный изгиб, благодаря чему не испытывает натяжений при движении глазного яблока. На значительном протяжении (от выхода из глазного яблока до входа в зрительный канал) нерв, подобно мозгу, имеет три оболочки: твердую, паутинную, мягкую. Вместе с ними толщина его составляет 4–4,5 мм, без них – 3–3,5 мм. У глазного яблока твердая оболочка срастается со склерой и телоновой капсулой, а у зрительного канала – с надкостницей. Внутричерепной отрезок нерва и хиазма, находящиеся в субарахноидаль-ной хиазматической цистерне, одеты только в мягкую оболочку. Подоболочечные пространства глазничной части нерва (субду-ральное и субарахноидальное) соединяются с аналогичными пространствами головного мозга, но изолированы друг от друга. Они заполнены жидкостью сложного состава (внутриглазная, тканевая, цереброспинальная). Поскольку внутриглазное давление в норме в два раза выше внутричерепного (10–12 мм рт. ст.), направление ее тока совпадает с градиентом давления. Исключение составляют случаи, когда существенно повышается внутричерепное давление (например, при развитии опухоли мозга, кровоизлияниях в полость черепа) или, наоборот, значительно снижается тонус глаза. Все первичные волокна, входящие в состав зрительного нерва, группируются в три основные пучка. Аксоны ганглиозных клеток, отходящие от центральной (макулярной) области сетчатки, составляют папилломакулярный пучок, который входит в височную половину диска зрительного нерва. Волокна от ганглиозных клеток носовой половины сетчатки идут по радиальным линиям в носовую половину диска. Аналогичные волокна, но от височной половины сетчатки, на пути к диску зрительного нерва сверху и снизу «обтекают» папилломаку-лярный пучок. В глазничном отрезке зрительного нерва вблизи глазного яблока соотношения между нервными волокнами остаются такими же, как и в его диске. Далее папилломакулярный пучок перемещается в осевое положение, а волокна от височных квадратов сетчатки – на всю соответствующую половину зрительного нерва. Таким образом, зрительный нерв четко разделен на правую и левую половины. Менее выражено его деление на верхнюю и нижнюю половины. Важной в клиническом смысле особенностью является то, что нерв лишен чувствительных нервных окончаний. В области черепа зрительные нервы соединяются над областью турецкого седла, образуя хиазму, которая покрыта мягкой мозговой оболочкой и имеет следующие размеры: длина 4-10 мм, ширина 9-11 мм, толщина 5 мм. Хиазма снизу граничит с диафрагмой турецкого седла (сохранившийся участок твердой мозговой оболочки), сверху (в заднем отделе) – с дном третьего желудочка мозга, по бокам – с внутренними сонными артериями, сзади – с воронкой гипофиза. В области хиазмы волокна зрительных нервов частично перекрещиваются за счет порций, связанных с носовыми половинками сетчаток. Переходя на противоположную сторону, они соединяются с волокнами, идущими от височных половин сетчаток другого глаза, и образуют зрительные тракты. Здесь же частично перекрещиваются и папилломакулярные пучки. Зрительные тракты начинаются у задней поверхности хиазмы и, обогнув с наружной стороны ножки мозга, оканчиваются в наружном коленчатом теле, задней части зрительного бугра и переднем четверохолмии соответствующей стороны. Однако только наружные коленчатые тела являются безусловным подкорковым зрительным центром. Остальные два образования выполняют другие функции. В зрительных трактах, длина которых у взрослого человека достигает 30–40 мм, папилломакулярный пучок также занимает центральное положение, а перекрещенные и неперекрещен-ные волокна по-прежнему идут отдельными пучками. При этом первые из них расположены вектромедиально, а вторые – до-реолатерально. Зрительная лучистость (волокна центрального нейрона) начинается от ганглиозных клеток пятого и шестого слоев наружного коленчатого тела. Сначала аксоны этих клеток образуют так называемое поле Верника, а затем, пройдя через заднее бедро внутренней капсулы, веерообразно расходятся в белом веществе затылочной доли мозга. Центральный нейрон заканчивается в борозде птичьей шпоры. Эта область и олицетворяет сенсорный зрительный центр – семнадцатое корковое поле по Бродману. Путь зрачкового рефлекса – светового и на установку глаз на близкое расстояние – довольно сложен. Афферентная часть рефлекторной дуги первого из них начинается от колбочек и палочек сетчатки в виде автономных волокон, идущих в составе зрительного нерва. В хиазме они перекрещиваются точно так же, как и зрительные волокна, и переходят в зрительные тракты. Перед наружными коленчатыми телами пупилломоторные волокна оставляют их и после частичного перек-реста оканчиваются у клеток так называемой претектальной области. Далее новые, межуточные нейроны после частичного перекреста направляются к соответствующим ядрам (Якутовича – Эдингера – Вестфаля) глазодвигательного нерва. Афферентные волокна от желтого пятна сетчатки каждого глаза представлены в обоих глазодвигательных ядрах. Эфферентный путь иннервации сфинктера радужки начинается от уже упомянутых ядер и идет обособленным пучком в составе глазодвигательного нерва. В глазнице волокна сфинктера входят в его нижнюю ветвь. А затем через глазодвигательный корешок – в ресничный узел. Здесь заканчивается первый нейрон рассматриваемого пути и начинается второй. По выходу из ресничного узла волокна сфинктера в составе коротких ресничных нервов, пройдя через склеру, попадают в пе-рихориоидальное пространство, где образуют нервное сплетение. Его конечные разветвления проникают в радужку и входят в мышцу отдельными радиальными пучками, т. е. иннервируют ее секторально. Всего в сфинктере зрачка насчитывается 70–80 таких сегментов. Эфферентный путь дилататора (расширителя) зрачка, получающего симпатическую иннервацию, начинается от ци-лиоспинального центра Будге. Последний находится в передних рогах спинного мозга. Отсюда отходят соединительные ветви, которые через пограничный ствол симпатического нерва, а затем нижний и средний симпатические шейные ганглии достигают верхнего ганглия. Здесь заканчивается первый нейрон пути и начинается второй, входящий в состав сплетения внутренней сонной артерии. В полости черепа волокна, иннер-вирующие дилататор зрачка, выходят из упомянутого сплетения, входят в тройничный (гассеров) узел, а затем покидают его в составе глазного нерва. Уже у вершины границы они переходят в носоресничный нерв и далее вместе с длинными ресничными нервами проникают в глазное яблоко. Кроме того, от центра Будге отходит центральный симпатический путь, заканчивающийся в коре затылочной доли мозга. Отсюда начинается уже кортиконуклеарный путь торможения сфинктера зрачка. Регуляция функции дилататора зрачка проходит с помощью супрануклеарного гипоталамического центра, находящегося на уровне третьего желудочка мозга перед воронкой гипофиза. Посредством ретикулярной формации он связан с цилиоспи-нальным центром Будге. Реакция зрачков на конвергенцию и аккомодацию имеет свои особенности, и рефлекторные дуги в этом случае отличаются от описанных выше. При конвергенции стимулом к сужению зрачка служат про-приоцептивные импульсы, идущие от сокращающихся внутренних прямых мышц глаза. Аккомодация же стимулируется расплывчатостью (расфокусировкой) изображений внешних объектов на сетчатке. Эффективная часть дуги зрачкового рефлекса в обоих случаях одинакова. Центр установки глаза на близкое расстояние находится, как полагают, в восемнадцатом корковом поле по Бродману. ВНУТРЕННЯЯ ПОЛОСТЬ ГЛАЗНОГО ЯБЛОКА Полость глаза содержит светопроводящие и светопреломляющие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело. Передняя камера глаза (сатега ашепог Ьи1Ы) представляет собой пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью передней капсулы хрусталика. Место, где роговица переходит в склеру, а радужка – в ресничное тело, называется углом передней камеры. В его наружной стенке находится дренажная (для водянистой влаги) система глаза, состоящая из трабекулярной сеточки, склерального венозного синуса (шлеммов канал) и коллекторных канальцев (выпускников). В углу передней камеры разрыхляющая ткань стромы радужки переплетается с роговично-склеральными пластинками и образует соединительно-тканный остов. Щели между трабекулами этого остова, заполненные жидкостью передней камеры, называются фон-тановым пространством. С ним граничит шлеммов канал – круговой синус, расположенный в ткани прилежащей части склеры и сообщающийся с передними венами. Через угол передней камеры осуществляется основная часть оттока водянистой влаги. Через зрачок передняя камера свободно сообщается с задней. В этом месте она имеет наибольшую глубину (2,75– 3,5 мм), которая постепенно уменьшается по направлению к периферии. У новорожденных глубина передней камеры колеблется от 1,5 мм до 2 мм. Задняя камера – это узкое пространство, ограниченное спереди радужкой, которая является ее передней стенкой и ограничена снаружи стекловидным телом. Внутреннюю стенку образует экватор хрусталика. Все пространство задней камеры пронизано связками ресничного пояска. Задняя камера через зрачок соединяется с передней камерой. В норме обе камеры глаза заполнены водянистой влагой, которая по своему составу напоминает диализат плазмы крови. Водянистая влага содержит питательные вещества, в частности глюкозу, аскорбиновую кислоту и кислород, потребляемые хрусталиком и роговицей, и уносит из глаза отработанные продукты обмена – молочную кислоту, углекислый газ, отшелушившиеся пигментные и другие клетки. Обе камеры глаза вмещают 1,223-1,32 см жидкости, что составляет 4 % всего содержимого глаза. Минутный объем камерной влаги равен в среднем 2 мм , суточный – 2,9 см . Иными словами, полный обмен камерной влаги происходит в течение 10 ч. Между протоком и оттоком внутриглазной жидкости существует равновесный баланс. Если по каким-либо причинам он нарушается, это приводит к изменению уровня внутриглазного давления. Основной движущей силой, обеспечивающей непрерывный ток жидкости из задней камеры в переднюю, а затем через угол передней камеры за пределы глаза, является разность давлений в полости глаза и венозном синусе склеры (около 20 мм рт. ст.), а также в указанном синусе и передних ресничных венах. Хрусталик является частью светопроводящей и светопреломляющей системы глаза. Это прозрачная, двояковыпуклая биологическая линза, обеспечивающая динамичность оптики глаза благодаря механизму аккомодации. В процессе эмбрионального развития хрусталик формируется на 3-4-й неделе жизни зародыша из эктодермы, покрывающей стенку глазного бокала. Эктодерма втягивается в полость глазного бокала, и из нее формируется зачаток хрусталика в виде пузырька. Из удлиняющихся эпителиальных клеток внутри пузырька образуются хрусталиковые волокна. Хрусталик имеет форму двояковыпуклой линзы. Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны. Передняя поверхность более плоская. Радиус ее кривизны (К = 10 мм) больше, чем радиус кривизны задней поверхности (К = 6 мм). Центры передней и задней поверхности хрусталика называют соответственно передним и задним полюсами, а соединяющую их линию – осью хрусталика, длина которой составляет 3,5–4,5 мм. Линия перехода передней поверхности в заднюю – это экватор. Диаметр хрусталика 9-10 мм. Хрусталик покрыт тонкой бесструктурной прозрачной капсулой. Часть капсулы, выстилающая переднюю поверхность хрусталика, имеет название «передняя капсула» («передняя сумка») хрусталика. Ее толщина 11–18 мкм. Изнутри передняя капсула покрыта однослойным эпителием, а задняя его не имеет, она почти в два раза тоньше передней. Эпителий передней капсулы играет важную роль в метаболизме хрусталика, характеризуется высокой активностью окислительных ферментов по сравнению с центральным отделом линзы. Эпителиальные клетки активно размножаются. У экватора они удлиняются, формируя зону роста хрусталика. Вытягивающиеся клетки превращаются в хрусталиковые волокна. Молодые лентовидные клетки оттесняют старые волокна к центру. Этот процесс непрерывно протекает на протяжении всей жизни. Центрально расположенные волокна теряют ядра, обезвоживаются и сокращаются. Плотно наслаиваясь друг на друга, они формируют ядро хрусталика. Размер и плотность ядра с годами увеличиваются. Это не отражается на степени прозрачности хрусталика, однако вследствие снижения общей эластичности постепенно уменьшается объем аккомодации. К 40–45 годам жизни уже имеется достаточно плотное ядро. Такой механизм роста хрусталика обеспечивает стабильность его наружных размеров. Замкнутая капсула хрусталика не позволяет погибшим клеткам слущиваться наружу. Как и все эпителиальные образования, хрусталик в течение всей жизни растет, но размер его не увеличивается. Молодые волокна, постепенно образующиеся на периферии хрусталика, формируют вокруг ядра эластичное вещество – кору хрусталика. Волокна коры окружены специфическим веществом, имеющим одинаковый с ними коэффициент преломления света. Оно обеспечивает их подвижность при сокращении и расслаблении, когда хрусталик меняет форму и оптическую силу в процессе аккомодации. Хрусталик имеет слоистую структуру, напоминая луковицу. Все волокна, отходящие в одной плоскости от зоны роста по окружности экватора, сходятся в центре и образуют трехконечную звезду, которая видна при биомикроскопии, особенно при появлении помутнений. Из описания строения хрусталика видно, что он является эпителиальным образованием: в нем нет ни нервов, ни кровеносных и лимфатических сосудов. Артерия стекловидного тела, которая в раннем эмбриональном периоде участвует в формировании хрусталика, впоследствии редуцируется. К 7-8-му месяцу рассасывается капсула сосудистого сплетения вокруг хрусталика. Хрусталик со всех сторон окружен внутриглазной жидкостью. Питательные вещества поступают через капсулу путем диффузии и активного транспорта. Энергетические потребности бессосудистого эпителиального образования в 10–20 раз ниже, чем потребности других органов и тканей. Они удовлетворяются посредством анаэробного гликолиза. По сравнению с другими структурами глаза, хрусталик содержит наибольшее количество белков (35–40 %). Это растворимые и кристаллины и нерастворимый альбуминоид. Белки хрусталика органоспецифичные. При иммунизации к этому белку может возникнуть анафилактическая реакция. В хрусталике есть углеводы и их производные, восстановители глюта-тиона, цистеина, аскорбиновой кислоты и др. В отличие от других тканей в хрусталике мало воды (до 60–65 %), причем с возрастом ее количество уменьшается. Содержание белка, воды, витаминов и электролитов в хрусталике значительно отличается от тех пропорций, которые выявляются во внутриглазной жидкости, стекловидном теле и плазме крови. Хрусталик плавает в воде, но, несмотря на это, является образованием, не содержащим воды, что объясняется особенностями водно-электролитного транспорта. В линзе поддерживается высокий уровень ионов калия – в 25 раз выше, чем в водянистой влаге глаза и стекловидном теле; концентрация ионов натрия находится на низком уровне, а концентрация аминокислот в 20 раз выше, чем в водянистой влаге глаза и стекловидном теле. Химический состав прозрачного хрусталика поддерживается на определенном уровне, так как капсула хрусталика обладает свойством избирательной проницаемости. При изменении состава внутриглазной жидкости происходит изменение состояния прозрачности хрусталика. У взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов. Хрусталик находится во фронтальной плоскости глаза, между радужкой и стекловидным телом, и делит глазное яблоко на передний и задний отделы. Спереди хрусталик служит опорой для зрачковой части радужки. Его задняя поверхность располагается в углублении стекловидного тела, от которого хрусталик отделяет узкая капиллярная щель, расширяющаяся при скоплении в ней экссудата. Хрусталик сохраняет свое положение в глазу при помощи круговой поддерживающей связки ресничного тела (цикловой связки). От эпителия цилиарных отростков отходят тонкие нити и вплетаются в капсулу хрусталика на передней и задней поверхностях, обеспечивая воздействие на капсулу хрусталика при работе мышечного аппарата цилиарного тела. Хрусталик выполняет в глазу ряд очень важных функций. Функция светопроведения – он является средой, через которую световые лучи проходят к сетчатке. Эта функция обеспечивается основным свойством хрусталика – его прозрачностью. Главная функция хрусталика – светопреломление. Он занимает второе место после роговицы по степени преломления световых лучей. Оптическая сила этой биологической линзы в пределах 19 дптр. Функцию аккомодации хрусталик обеспечивает, взаимодействуя с цилиарным телом. Он способен плавно изменять оптическую силу. Благодаря эластичности хрусталика возможен саморегулирующийся механизм фокусировки изображения. Этим обеспечивается динамичность рефракции. Благодаря тому, что хрусталик делит глазное яблоко на два отдела – меньший передний и большой задний, между ними образуется разделительный барьер, который защищает нежные структуры переднего отдела глаза от давления большой массы стекловидного тела. Когда глаз лишается хрусталика, стекловидное тело перемещается кпереди. В этом случае изменяются анатомические взаимоотношения, а также и функции. Затрудняются условия гидродинамики глаза за счет сужения (сдавления) угла передней камеры глаза и блокады области зрачка. Возникают условия к развитию вторичной глаукомы. При удалении хрусталика вместе с капсулой возникают изменения и в заднем отделе глаза вследствие вакуумного эффекта. Стекловидное тело, получившее некоторую свободу перемещения, отходит от заднего полюса и ударяется о стенки глазного яблока. В этом причина возникновения тяжелой патологии сетчатки, такой как отек, отслойка, кровоизлияния, разрывы. Защитный барьер – хрусталик является преградой для проникновения микробов из передней камеры в полость стекловидного тела. Пороки развития хрусталика могут иметь разные проявления. При изменении формы, размеров и локализации хрусталика нарушаются и его функции. Врожденная афакия – отсутствие хрусталика – встречается редко и, как правило, сочетается с другими пороками развития глаза. Микрофакия – маленький хрусталик. Обычно эта патология сочетается с изменением формы хрусталика (шаровидный хрусталик) или нарушением гидродинамики глаза. Клинически это проявляется выраженной близорукостью с неполной коррекцией зрения. Маленький круглый хрусталик, подвешенный на длинных слабых нитях круговой связки, имеет значительно большую, чем в норме, подвижность. Он может ставиться в просвет зрачка и вызвать зрачковый блок с резким повышением внутриглазного давления и болевым синдромом. Чтобы освободить хрусталик, нужно медикаментозным путем расширить зрачок. Микрофагия в сочетании с подвывихом хрусталика является одним из проявлений синдрома Марфана, наследственного порока развития всей соединительной ткани. Эктопия хрусталика, изменение его формы вызваны слабостью поддерживающих его связок. С возрастом отрыв цинновой связки увеличивается. В этом месте стекловидное тело выпячивается в виде грыжи. Экватор хрусталика становится видимым в области зрачка. Возможен и полный вывих хрусталика. Помимо глазной патологии, для синдрома Марфана характерны поражения опорно-двигательного аппарата и внутренних органов. Обращают на себя внимание особенности внешнего вида больного: высокий рост, непропорционально длинные конечности, тонкие, длинные пальцы рук (арахнодактилия), слабо развитые мышцы и подкожная жировая клетчатка, искривление позвоночника. Длинные и тонкие ребра образуют грудную клетку необычной формы. Помимо этого, выявляются пороки развития сердечно-сосудистой системы, вегето-сосудистые расстройства, дисфункция коркового вещества надпочечников, нарушение суточного ритма выведения глюкокортикоидов с мочой. Синдром Маргезани – маленький хрусталик с подвывихом или полным вывихом хрусталика. При этом синдроме отмечается системное наследственное поражение мезенхимальной ткани. Больные с этим синдромом в отличие от больных с синдромом Марфана имеют совершенно иной внешний вид: низкий рост, короткие руки, короткие и толстые пальцы, гипертрофированные мышцы, асимметричный сдавленный череп. Колобома хрусталика – дефект ткани линзы по средней линии в нижнем отделе. Данная патология наблюдается крайне редко и обычно сочетается с дефектом радужки, цилиарного тела и хориоидеи. Такие дефекты образуются вследствие неполного закрытия зародышевой щели при формировании вторичного глазного блока. Лентиконус – конусовидное выпячивание одной из поверхностей хрусталика. Лентиглобус – патология поверхности линзы заключается в шаровидной форме. Каждая из этих аномалий развития обычно отмечается на одном глазу, может сочетаться с помутнением хрусталика. Клинически лентиконус и лентиглобус проявляются усилением рефракции глаза, т. е. развитием миопии высокой степени и труднокорригируемого астигматизма. При аномалиях развития хрусталика, не сопровождающихся глаукомой или катарактой, специального лечения не требуется. В тех случаях, когда вследствие врожденной патологии хрусталика возникает некор-ригируемая очками аномалия рефракции, измененный хрусталик удаляют и заменяют его искусственным. Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока (около 65 % объема). У взрослого человека масса стекловидного тела 4 г, объем 3,5–4 мл. Стекловидное тело имеет шарообразную форму, несколько сплющенную в сагиттальном направлении. Его задняя поверхность прилежит к сетчатке, к которой оно фиксировано лишь у диска зрительного нерва и в области зубчатой линии у плоской части цилиарного тела. Этот участок в форме пояса шириной 2–2,5 мм называют основанием стекловидного тела. Сращения между стекловидным телом и капсулой хрусталика в области диска зрительного нерва с возрастом исчезают. Именно поэтому у взрослого человека можно удалить помутневший хрусталик в капсуле без повреждения передней пограничной мембраны стекловидного тела и его выпадения, а у ребенка практически невозможно. В стекловидном теле различают собственно стекловидное тело, пограничную мембрану и стекловидный (клокеток) канал, представляющий собой трубку диаметром 1–2 мм, идущую от диска зрительного нерва к задней поверхности хрусталика, не достигая его задней коры. В эмбриональном периоде жизни человека через этот канал проходит артерия стекловидного тела, исчезающая ко времени рождения. Стекловидное тело – прозрачное, бесцветное, гелеобраз-ное вещество, спереди в стекловидном теле имеется углубление, в котором располагается хрусталик. Стекловидное тело имеет фибриллярную структуру, и межфибриллярные промежутки заполнены жидким и вязким содержимым, у стекловидного тела имеется наружная оболочка или мембрана, поэтому обнаженное стекловидное тело не растекается и сохраняет свою форму. По химической структуре стекловидное тело представляет собой гидрофильный гель органического происхождения, 98,8 % которого составляет вода и 1,12 % – сухой остаток, содержащий белки, аминокислоты, мочевину, креатинин, сахар, калий, магний, натрий, фосфат, хлориды, сульфаты, холестерин и др. При этом белки, составляющие 3,6 % сухого остатка, представлены витрохином и муцином, обеспечивающими вязкость стекловидного тела, в десятки раз превышающую вязкость воды. Стекловидное тело обладает свойствами коллоидных растворов, и его рассматривают как структурную, но малодиф-ференцированную соединительную ткань. В течение жизни в стекловидном теле происходит целый ряд физико-химических изменений, приводящих к разжижению его гелеобразного вещества. При этом происходит коллапс стекловидного тела, оно смещается кпереди и отслаивается от сетчатой оболочки. Образовавшееся пространство заполняется внутриглазной жидкостью, в которой могут находиться мелкие взвешенные частицы крови, фибрина и др. Больные при этом начинают жаловаться на плавающие помутнения («летающие мушки», паутину перед глазами). При наличии сохранившихся сращений между стекловидным телом и сетчаткой может в результате тракций произойти ее разрыв с последующей отслойкой, перед этим больные жалуются на вспышки света в глазу, которые вызываются механическим раздражением сетчатки при тракциях стекловидного тела. Сосудов и нервов в стекловидном теле нет, однако при повреждении сосудов сетчатки кровь попадает в стекловидное тело, вызывая его помутнение. Нарушение прозрачности стекловидного тела вызывает и экссудация при воспалении цилиар-ного тела, сетчатки и хориоидеи. Стекловидное тело обладает низкой бактерицидной активностью. Лейкоциты и антитела обнаруживаются в нем спустя некоторое время после инфицирования. Питание стекловидного тела обеспечивается за счет осмоса и диффузии питательных веществ из внутриглазной жидкости. Стекловидное тело является для глазного яблока опорной тканью, которая поддерживает его стабильную форму и тонус. При значительных потерях стекловидного тела (1/3 и более) без его замещения глазное яблоко теряет тургор и атрофируется. Кроме того, стекловидное тело выполняет определенную защитную функцию для внутренних оболочек глаза, обеспечивает контакт сетчатки с сосудистой оболочкой, участвует во внутриглазном обмене веществ, а также играет некоторую роль как преломляющая среда глаза. С возрастом стекловидное тело изменяется: в нем появляются вакуоли, плавающие помутнения, волокна становятся более грубыми. МЫШЦЫ ГЛАЗНОГО ЯБЛОКА Мышечный аппарат каждого глаза состоит из трех пар антагонистически действующих глазодвигательных мышц: верхней и нижней прямых, внутренней и наружной прямых, верхней и нижней косых. Все мышцы, за исключением нижней косой, начинаются, как и мышцы, поднимающие верхнее веко, от сухожильного кольца, расположенного вокруг зрительного канала глазницы. Затем четыре прямые мышцы направляются, постепенно ди-вергируясь, кпереди и после прободения теиновой капсулы вплетаются своими сухожилиями в склеру. Линии их прикрепления находятся на разном расстоянии от лимба: внутренней прямой – 5,5–5,75 мм, нижней – 6–6,6 мм, наружной – 6,9–7 мм, верхней – 7,7–8 мм. Верхняя косая мышца от зрительного отверстия направляется к костно-сухожильному блоку, расположенному у верхневнутреннего угла глазницы и, перекинувшись через него, идет кзади и кнаружи в виде компактного сухожилия; прикрепляется к склере в верхненаружном квадранте глазного яблока на расстоянии 16 мм от лимба. Нижняя косая мышца начинается от нижней костной стенки глазницы несколько латеральнее места входа в носослез-ный канал, идет кзади и кнаружи между нижней стенкой глазницы и нижней прямой мышцей; прикрепляется к склере на расстоянии 16 мм от лимба (нижненаружный квадрант глазного яблока). Внутренняя, верхняя и нижняя прямые мышцы, а также нижняя косая мышца иннервируются веточками глазодвигательного нерва, наружная прямая – отводящего, верхняя косая – блокового. При сокращении той или иной мышцы глаз совершает движение вокруг оси, которая перпендикулярна ее плоскости. Последняя проходит вдоль мышечных волокон и пересекает точку вращения глаза. Это означает, что у большинства глазодвигательных мышц (за исключением наружной и внутренней прямых мышц) оси вращения имеют тот или иной угол наклона по отношению к исходным координатным осям. Вследствие этого при сокращении таких мышц глазное яблоко совершает сложное движение. Так, например, верхняя прямая мышца при среднем положении глаза поднимает его кверху, ротирует кнутри и несколько поворачивает к носу. Вертикальные движения глаза будут увеличиваться по мере уменьшения угла расхождения между сагиттальной и мышечной плоскостями, т. е. при повороте глаза кнаружи. Все движения глазных яблок подразделяют на сочетанные (ассоциированные, коньюгированные) и конвергентные (фиксация разноудаленных объектов за счет конвергенции). Соче-танные движения – это те, которые направлены в одну сторону: вверх, вправо, влево и т. д. Эти движения совершаются мышцами – синергистами. Так, например, при взгляде вправо в правом глазу сокращается наружная, а в левом – внутренняя прямые мышцы. Конвергентные движения реализуются посредством действия внутренних прямых мышц каждого глаза. Разновидностью их являются фузионные движения. Будучи очень мелкими, они осуществляют особо точную фиксационную установку глаз, благодаря чему создаются условия для беспрепятственного слияния в корковом отделе анализатора двух сетчаточных изображений в один цельный образ. СИСТЕМА КРОВООБРАЩЕНИЯ ГЛАЗА Магистралью, снабжающей глаз кровью, является глазная артерия – ветвь внутренней сонной артерии. Глазная артерия отходит от внутренней сонной артерии в полости черепа под тупым углом и тут же входит в глазницу через зрительное отверстие вместе со зрительным нервом, прилегая к его нижней поверхности. Затем, огибая зрительный нерв с наружной стороны и располагаясь на его верхней поверхности, глазная артерия образует дугу, от которой отходит большинство ее ветвей. Глазная артерия включает следующие ветви: слезную артерию, центральную артерию сетчатки, мышечные ветви, ресничные задние артерии, длинные и короткие и ряд других. Центральная артерия сетчатки, отойдя от глазной артерии, входит на расстоянии 10–12 мм от глазного яблока в зрительный нерв и далее вместе с ним в глазное яблоко, где разделяется на ветви, питающие мозговой слой сетчатки. Они относятся к концевым, не имеющим анастомозов с соседними ветвями. Система цилиарных артерий. Цилиарные артерии делятся на задние и передние. Задние цилиарные артерии, отойдя от глазной артерии, подходят к заднему отрезку глазного яблока и, пройдя склеру в окружности зрительного нерва, распределяются в сосудистом тракте. В задних цилиарных артериях различают четыре-шесть коротких. Короткие цилиарные артерии, пройдя склеру, тут же распадаются на большое количество ветвей и формируют собственно сосудистую оболочку. Перед прохождением склеры они образуют вокруг основания зрительного нерва сосудистый венчик. Длинные задние цилиарные артерии, проникнув внутрь глаза, идут между склерой и сосудистой оболочкой в направлении горизонтального меридиана к ресничному телу. У переднего конца ресничной мышцы каждая артерия делится на две ветви, которые идут концентрически с лимбом и, встречаясь с такими же ветвями второй артерии, образуют замкнутый круг – большой артериальный круг радужной оболочки. От большого артериального круга радужки в ее ткань идут ветви. На границе ресничного и зрачкового поясов радужной оболочки они образуют малый артериальный круг. Передние цилиарные артерии являются продолжением мышечных артерий. Не заканчиваясь у сухожилия четырех прямых мышц, передние цилиарные артерии идут дальше по поверхности глазного яблока в эписклеральной ткани на расстоянии 3–4 мм от лимба проникают в глазное яблоко (семь стволов). Анастомозируя с другими длинными цилиарными артериями, они участвуют в образовании большого круга кровообращения радужной оболочки и в кровоснабжении цили-арного тела. Верхняя пара вортикозных вен впадает в верхнюю глазную вену, нижняя – в нижнюю. Отток венозной крови из вспомогательных органов глаза и глазницы происходит по сосудистой системе, которая имеет сложное строение и характеризуется рядом очень важных в клиническом отношении особенностей. Все вены этой системы лишены клапанов, вследствие чего отток крови по ним может происходить как в сторону пещеристого синуса, т. е. в полость черепа, так и в систему вен лица, которые связаны с венозными сплетениями височной области головы, крыловидного отростка, крылонебной ямки, мыщелкового отростка нижней челюсти. Кроме того, венозное вплетение глазницы анастомозирует с венами решетчатых пазух и носовой полости. Все эти особенности и обусловливают возможность опасного рас-прост-ранения гнойной инфекции с кожи лица (фурункулы, абсцессы, рожистое воспаление) или из околоносовых пазух в пещеристый синус. Таким образом, большая часть крови глаза и глазницы идет назад, в систему мозговых синусов, меньшая – вперед, в систему вен лица. Вены глазницы не имеют клапанов. Венозная система органа зрения. Отток венозной крови непосредственно из глазного яблока происходит в основном по внутренней (ретинальной) и наружной (ресничной) сосудистым системам глаза. Первая представлена центральной веной сетчатки, вторая – четырьмя вортикозными венами. Центральная вена сетчатки сопровождает соответствующую артерию и имеет такое же, как она, распределение. В стволе зрительного нерва она соединяется с центральной артерий сетчатки в так называемый центральный соединительный тяж посредством отростков, отходящих от мягкой мозговой оболочки. Впадает либо непосредственно в пещеристый синус, либо предварительно в верхнюю глазную вену. Вортикозные вены отводят кровь из хориоидеи, ресничных отростков и большей части мышц ресничного тела, а также радужки. Они просекают склеру в косом направлении в каждом из квадрантов глазного яблока на уровне его экватора. Снабжение чувствительными волокнами осуществляется за счет глазного нерва, берущего начало от гассерова узла. Войдя через верхнеглазничную щель в орбиту, глазной нерв разделяется на носоресничный, слезный и лобный. ИННЕРВАЦИЯ ГЛАЗНОГО ЯБЛОКА Нервная система глаза представлена всеми видами иннервации: чувствительными, симпатическими и двигательными. Перед проникновением внутрь глазного яблока передние ци-лиарные артерии отдают ряд ветвей, которые образуют вокруг роговицы краевую петлистую сеть. Передние цилиарные артерии отдают еще и ветви, которые снабжают конъюнктиву, прилегающую к лимбу (передние конъюнктивальные сосуды). Носоресничный нерв отдает веточку цилиарному узлу, другие волокна представляют собой длинные ресничные нервы. Не прерываясь в ресничном узле, 3–4 ресничных нерва прободают глазное яблоко вокруг зрительного нерва и по супрахо-риоидальному пространству достигают цилиарного тела, где образуют густое сплетение. От последнего нервные веточки проникают в роговицу. Кроме длинных ресничных нервов, в глазное яблоко в том же участке входят короткие цилиарные нервы, берущие начало от ресничного узла. Ресничный узел является периферическим нервным ганглием и имеет величину около 2 мм. Он расположен в глазнице с наружной стороны от зрительного нерва в 8-10 мм от заднего полюса глаза. В состав ганглия, помимо носоресничных волокон, входят парасимпатические волокна из сплетения внутренней сонной артерии. Короткие ресничные нервы (4–6), входящие в глазное яблоко, обеспечивают все ткани глаза чувствительными, двигательными и симпатическими волокнами. Симпатические нервные волокна, иннервирующие дилата-тор зрачка, входят в глаз в составе коротких ресничных нервов, но, присоединяясь к ним между ресничным узлом и глазным яблоком, в цилиарный узел не заходят. В глазнице к длинным и коротким цилиарным нервам присоединяются симпатические волокна из сплетения внутренней сонной артерии, не входящие в цилиарный узел. Цилиарные нервы проникают в глазное яблоко недалеко от зрительного нерва. Короткие цилиарные нервы, идущие от цилиарного узла в количестве 4–6, пройдя через склеру, увеличиваются до 20–30 нервных стволиков, распределяющихся преимущественно в сосудистом тракте, причем в хориоидее чувствительных нервов нет, а симпатические волокна, присоединившиеся в орбите, иннервируют дилататор радужной оболочки. Поэтому при патологических процессах в одной из оболочек, например в роговице, отмечаются изменения и в радужной оболочке, и в цилиарном теле. Таким образом, основная часть нервных волокон идет к глазу от цилиарного узла, который расположен в 7-10 мм от заднего полюса глазного яблока и прилегает к зрительному нерву. В состав цилиарного узла входят три корешка: чувствительный (от носоресничного нерва – ветки тройничного нерва); двигательный (образован парасимпатическими волокнами, проходящими в составе глазодвигательного нерва) и симпатический. От четырех до шести коротких цилиарных нервов, выходящих из цилиарного узла, разветвляются еще на 20–30 веточек, которые направляются по всем структурам глазного яблока. С ними идут и симпатические волокна от верхнего шейного симпатического ганглия, не заходящие в цилиарный узел, иннервирующие мышцу, расширяющую зрачок. Кроме того, внутрь глазного яблока, минуя цилиарный узел, проходят еще и 3–4 длинных цилиарных нерва (ветви носореснич-ного нерва). Двигательная и чувствительная иннервация глаза и его вспомогательных органов. Двигательная иннервация органа зрения человека реализуется с помощью III, IV, VI, VII пар черепных нервов, чувствительная – посредством первой и отчасти второй ветвей тройничного нерва (V пара черепных нервов). Глазодвигательный нерв (третья пара черепных нервов) начинается от ядер, лежащих на дне сильвиева водопровода на уровне передних бугров четверохолмия. Эти ядра неоднородны и состоят из двух главных боковых (правого и левого), включающих по пять групп крупных клеток, и добавочных мелкоклеточных – двух парных боковых (ядро Якубовича – Эдингера – Вестфаля) и одного непарного (ядро Перлиа), расположенного между ними. Протяженность ядер глазодвигательного нерва в переднезаднем направлении – 5 мм. От парных боковых крупноклеточных ядер отходят волокна для трех прямых (верхней, внутренней и нижней) и нижней косой глазодвигательных мышц, а также для двух порций мышцы, поднимающей верхнее веко, причем волокна, иннер-вирующие внутреннюю и нижнюю прямые, а также нижнюю косую мышцы, сразу же перекрещиваются. Волокна, отходящие от парных мелкоклеточных ядер, через ресничный узел иннервируют мышцу сфинктера зрачка, а отходящие от непарного ядра – ресничную мышцу. Посредством волокон медиального продольного пучка ядра глазодвигательного нерва связаны с ядрами блокового и отводящего нервов, системой вестибулярных и слуховых ядер, ядром лицевого нерва и передними рогами спинного мозга. Благодаря этому обеспечиваются реакции глазного яблока, головы, туловища на всевозможные импульсы, в частности вестибулярные, слуховые и зрительные. Через верхнюю глазничную щель глазодвигательный нерв проникает в глазницу, где в пределах мышечной воронки делится на две ветви – верхнюю и нижнюю. Верхняя тонкая ветвь располагается между верхней мышцей и мышцей, поднимающей верхнее веко, и иннервирует их. Нижняя, более крупная ветвь проходит под зрительным нервом и делится на три веточки – наружную (от нее отходит корешок к ресничному узлу и волокна для нижней косой мышцы), среднюю и внутреннюю (иннервируют соответственно нижнюю и внутреннюю прямые мышцы). Корешок несет в себе волокна от добавочных ядер глазодвигательного нерва. Они иннервируют ресничную мышцу и сфинктер зрачка. Блоковый нерв (четвертая пара черепных нервов) начинается от двигательного ядра (длина 1,5–2 мм), расположенного на дне сильвиева водопровода сразу же за ядром глазодвигательного нерва. Проникает в глазницу через верхнюю глазничную щель латеральнее мышечной воронки. Иннерви-рует верхнюю косую мышцу. Отводящий нерв (шестая пара черепных нервов) начинается от ядра, расположенного в варолиевом мосту на дне ромбовидной ямки. Покидает полость черепа через верхнюю глазничную щель, располагаясь внутри мышечной воронки между двумя ветвями глазодвигательного нерва. Иннервирует наружную прямую мышцу глаза. Лицевой нерв (седьмая пара черепных нервов) имеет смешанный состав, т. е. включает не только двигательные, но также и чувствительные, вкусовые и секреторные волокна, которые принадлежат промежуточному нерву. Последний тесно прилежит к лицевому нерву на основании мозга с наружной стороны и является его задним корешком. Двигательное ядро нерва (длина 2–6 мм) расположено в нижнем отделе варолиева моста на дне четвертого желудочка. Отходящие от него волокна выходят в виде корешка на основание мозга в мостомозжечковом углу. Затем лицевой нерв вместе с промежуточным входит в лицевой канал височной кости. Здесь они сливаются в общий ствол, который далее пронизывает околоушную слюнную железу и делится на две ветви, образующие околоушное сплетение. От него к мимическим мышцам отходят нервные стволы, иннервирующие в том числе круговую мышцу глаза. Промежуточный нерв содержит секреторные волокна для слезной железы, расположенной в стволовой части мозга, и через узел коленца попадают в большой каменистый нерв. Афферентный путь для основной и добавочной слезных желез начинается конъюнктивальными и носовыми ветвями тройничного нерва. Существуют и другие зоны рефлекторной стимуляции слезопродукции – сетчатка, передняя лобная доля мозга, базальный ганглий, таламус, гипоталамус и шейный симпатический ганглий. Уровень поражения лицевого нерва можно определить по состоянию секреции слезной жидкости. Когда она не нарушена, очаг находится ниже узла коленца, и наоборот. Тройничный нерв (пятая пара черепных нервов) является смешанным, т. е. содержит чувствительные, двигательные, парасимпатические и симпатические волокна. В нем выделяют ядра (три чувствительных – спинальное, мостовое, средне-мозговое – и одно двигательное), чувствительный и двигательный корешки, а также тройничный узел (на чувствительном корешке). Чувствительные нервные волокна начинаются от биполярных клеток мощного тройничного узла шириной 14–29 мм и длиной 5-10 мм. Аксоны тройничного узла образуют три главные ветви тройничного нерва. Каждая из них связана с определенными нервными узлами: глазной нерв – с ресничным, верхнечелюстной – с крылонебным и нижнечелюстной – с ушным, поднижнече-люстным и подъязычным. Первая ветвь тройничного нерва, будучи наиболее тонкой (2–3 мм), выходит из полости черепа через орбитальную щель. При подходе к ней нерв делится на три основные ветви: н. назоцилиарис, н. фронталис, н. лакрималис. Нерв назоцилиарис, расположенный в пределах мышечной воронки глазницы, в свою очередь, делится на длинные ресничные решетчатые и носовые ветви и отдает, кроме того, корешок к ресничному узлу. Длинные ресничные нервы в виде 3–4 тонких стволов направляются к заднему полюсу глаза, перфорируют склеру в окружности зрительного нерва и по супрахориоидальному пространству направляются кпереди вместе с короткими ресничными нервами, отходящими от ресничного тела и по окружности роговицы. Веточки этих сплетений обеспечивают чувствительную и трофическую иннервацию соответствующих структур глаза и перилимбальной конъюнктивы. Остальная часть ее получает чувствительную иннервацию от пальпе-бральных ветвей тройничного нерва. На пути к глазу к длинным ресничным нервам присоединяются симпатические нервные волокна из сплетения внутренней сонной артерии, которые иннервируют расширитель зрачка. Короткие ресничные нервы (4–6) отходят от ресничного узла, клетки которого посредством чувствительного, двигательного и симпатического корешков связаны с волокнами соответствующих нервов. Он находится на расстоянии 18–20 мм за задним полюсом глаза под наружной прямой мышцей, прилегая в этой зоне к поверхности зрительного нерва. Как и длинные ресничные нервы, короткие тоже подходят к заднему полюсу глаза, перфорируют склеру по окружности зрительного нерва и, увеличиваясь в числе (до 20–30), участвуют в иннервации тканей глаза, в первую очередь его сосудистой оболочки. Длинные и короткие ресничные нервы являются источником чувствительной (роговица, радужка, ресничное тело), вазомоторной и трофической иннервации. Конечной ветвью нерва назоцилиарис является подблоко-вый нерв, который иннервирует кожу в области корня носа, внутреннего угла век и соответствующие отделы конъюнктивы. Лобный нерв, будучи наиболее крупной ветвью глазного нерва, после входа в глазницу отдает две крупные ветви – надглазничный нерв с медиальной и латеральной ветвями и над-блоковый нерв. Первый из них, перфорировав тарзоорбиталь-ную фасцию, проходит через носоглоточное отверстие лобной кости к коже лба, а второй выходит из глазницы у ее внутренней связки. В целом лобный нерв обеспечивает чувствительную иннервацию средней части верхнего века, включая конъюнктиву, и кожи лба. Слезный нерв, войдя в глазницу, идет кпереди над наружной прямой мышцей глаза и делится на две веточки – верхнюю (более крупную) и нижнюю. Верхняя ветвь, являясь продолжением основного нерва, отдает веточки к слезной железе и конъюнктиве. Часть их после прохождения железы перфорирует тарзоорбитальную фасцию и иннервирует кожу в области наружного угла глаза, включая участок верхнего века. Небольшая нижняя веточка слезного нерва анастомозирует со скуловисочной ветвью скулового нерва, несущей секреторные волокна для слезной железы. Вторая ветвь тройничного нерва принимает участие в чувствительной иннервации только вспомогательных органов глаза посредством двух своих ветвей – скулового и подглазничного нервов. Оба эти нерва отделяются от основного ствола в крылонебной ямке и проникают в полость глазницы через нижнюю глазничную щель. Подглазничный нерв, войдя в глазницу, проходит по борозде ее нижней стенки и через подглазничный канал выходит на лицевую поверхность. Иннервирует центральную часть нижнего века, кожу крыльев носа и слизистую оболочку его преддверия, а также слизистую оболочку верхней губы, верхней десны, луночковых углублений и, кроме того, верхний зубной ряд. Скуловой нерв в полости глазницы делится на две веточки: скуловисочную и скулолицевую. Пройдя через соответствующие каналы в скуловой кости, они иннервируют кожу боковой части лба и небольшой зоны скуловой области. ФИЗИОЛОГИЯ ЗРИТЕЛЬНОГО АКТА Световой поток, проникающий через роговицу и зрачок, проходит остальные преломляющие среды, прозрачные слои сетчатой оболочки и задерживается слоем пигментного эпителия, где непрерывно продуцируются зрительные вещества (зрительный пурпур и др.). Зрительные вещества под действием света подвергаются распаду. Вследствие такого распада зрительных веществ возникают ионные поля. Рецепторы зрительного анализатора (палочки и колбочки), оказываясь в зоне этих полей, когда концентрация ионов достигает необходимого уровня, получают различные по силе и по качеству раздражения. В виде биотоков они передаются по зрительным путям в кору головного мозга, где воспринимаются как зрительные образы внешнего мира. По данным академика С. И. Вавилова, свет действует на сетчатку уже в самых минимальных количествах – 2–4 фотона обычно являются порогом светоощущения человеческого глаза. Таким образом, практически глаз никогда не находится в полной темноте. Даже во время сна через сомкнутые веки на сетчатую оболочку попадает свет в больших количествах, чем 2–4 фотона. В обычных условиях жизни на сетчатую оболочку непрерывно влияет световой поток: все время происходит разложение зрительных веществ, так как глаз находится в постоянной готовности к зрительной функции, непрерывно происходит и синтез зрительных веществ. Такая активная непрерывная продуцирующая функция пигментного эпителия сетчатой оболочки обеспечивается, как уже говорилось выше, мощной сосудистой хориоидеи – в данном случае подтверждается положение И. П. Павлова о соответствии между структурой и функцией ткани. Распад и положение зрительных веществ постоянно уравновешены. Слишком большой распад зрительных веществ, который возникает от внезапного яркого освещения (прожектор, фары автомобиля в темноте) приводит к нарушению баланса между разрушением и синтезом. При этом человек испытывает чувство ослепления. Правда, очень скоро равновесие восстанавливается, и глаз снова может функционировать в условиях малой освещенности. Одновременность распада и синтеза – типичная черта диалектики природы. Противоречивость – единство противоположных процессов – иллюстрирует и зрительный акт. ЧАСТЬ II МЕТОДЫ ИССЛЕДОВАНИЯ ОРГАНАЗРЕНИЯ ГЛАВА 1 ОСНОВЕНЫЕ ФУНКЦИИ ОРГАНОВ ЗРЕНИЯ И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ Орган зрения является для человека важнейшим из всех органов чувств. Он позволяет получить до 90 % информации об окружающем мире. Зрение является сложным и до конца не изученным процессом. Зрительный анализатор состоит из трех основных отделов: рецепторного (в сетчатке глаза), проводникового (включает зрительные пути и глазодвигательные нервы) и коркового (в области шпорной борозды затылочной доли мозга). Здесь анализируются импульсы от фоторецепторов сетчатки (палочек и колбочек), от проприорецепторов внеглазных и внутриглазных мышц глаза. Глаз служит световоспринимающим участком зрительного анализатора. Человеческий глаз воспринимает свет с длиной волны 380–760 нм. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области центральной ямки желтого пятна, которая содержит высоко-дифференцированные клетки нейроэпителия – колбочки. За желтым пятном начинают преобладать менее дифференцированные фоторецепторы – палочки. Дневное зрение осуществляется колбочками, они обеспечивают цветовосприятие и высокую остроту зрения, но обладают менее высокой светочувствительностью, чем палочки. Сумеречное и ночное зрение осуществляется палочками, оно характеризуется низкой остротой и отсутствием цветовосприятия или сводится только к ощущению света. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение. Центральное зрение обеспечивается колбочками, характеризуется высокой обработкой, восприятием цвета, дает визуальное восприятие формы предмета. Периферическое зрение обеспечивается палочками, оно служит для ориентации в пространстве. Зрение двумя глазами, когда изображения сливаются в один зрительный образ, называется бинокулярным. ЦЕНТРАЛЬНОЕ ЗРЕНИЕ Центральным зрением следует считать центральный участок видимого пространства. Это зрение является наиболее высоким и характеризуется понятием «острота зрения». Острота зрения – это способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии, которая зависит от особенностей строения оптической системы и световоспринимающего аппарата глаза. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Определение остроты зрения (визометрия). Под нормальной остротой зрения понимается способность глаза различать раздельно две светящиеся точки под углом зрения в 1 мин. Гораздо удобнее измерять остроту зрения не зрительными углами, а величинами обратного значения, т. е. в относительных единицах. За нормальную остроту зрения, равную единице, принята обратная величина угла зрения в 1 мин. Острота зрения обратно пропорциональна углу зрения: чем меньше угол зрения, тем выше острота зрения. На основании этой зависимости рассчитываются таблицы для измерения остроты зрения. Существует много вариантов таблиц для определения остроты зрения, которые различаются по предъявляемым тест-объектам, или оптотипам. В физиологической оптике существуют понятия минимально видимого, различимого и узнаваемого. Обследуемый должен видеть оптотип, различать его детали, узнавать представляемый знак или букву. Оптотипы можно проецировать на экран или дисплей компьютера. В качестве оптотипов используют буквы, цифры, рисунки, полосы. Оптотипы построены так, чтобы с определенных расстояний детали оптотипа (толщина линий и промежутки между ними были видны под углом зрения в 1 мин, а весь оптотип – под углом зрения в 5 мин. Международным оптотипом принято разорванное кольцо Ландольта. В отечественной офтальмологии наиболее распространена таблица Головина – Сивцева, содержащая в качестве оптотипов буквы русского алфавита и кольца Ландольта. В таблице имеется 12 рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но они постепенно уменьшаются от верхнего ряда к нижнему. Величина оптотипов изменяется в арифметической регрессии. В пределах первых 10 рядов каждый ряд отличается от предыдущего на 0,1 единицы остроты зрения, в последних двух рядах на 0,5 единицы. Таким образом, если исследуемый читает третий ряд букв, то острота зрения равна 0,3; пятый – 0,5 и т. д. При использовании таблицы Головина – Сивцева остроту зрения определяют с 5 м. Нижний край таблицы должен находиться на расстоянии 120 см от уровня пола. Сначала определяют остроту зрения одного глаза (правого), затем – левого глаза. Второй глаз закрывают заслонкой. С расстояния 5 м под углом зрения в 1 мин видны детали опто-типов десятого ряда таблицы. Если пациент видит этот ряд таблицы, то его острота зрения равна 1,0. В конце каждого ряда оптотипов символом V указана острота зрения, соответствующая чтению данного ряда с расстояния 5 м. Слева от каждого ряда символом ^ указано расстояние, с которого различаются оптотипы этой строки при остроте зрения, равной 1,0. Так, первый ряд таблицы при остроте зрения, равной 1,0, можно увидеть с 50 м. Для определения остроты зрения можно воспользоваться формулой Сиеллена – Дойдерса У18118 = фТЭ, где й – расстояние, с которого исследуемый видит данный ряд таблицы (расстояние, с которого проводится исследование), м; ^ – расстояние, с которого исследуемый должен видеть этот ряд, м. Пользуясь приведенной формулой, можно определить остроту зрения в случаях, если исследование поводится в кабинете длиной, например, в 4,5 м, 4 м и т. д. Если больной видит пятый ряд таблицы с расстояния 4 м, то его острота зрения равна: 4/10 = 0,4. Встречаются люди и с более высокой остротой зрения – 1,5; 2,0 и более. Они читают одиннадцатую или двенадцатую строку таблицы. Описан случай остроты зрения невооруженным глазом: обследуемый различал спутники Юпитера, которые с Земли видны под углом в 1 сек. При остроте зрения ниже 0,1 обследуемого нужно приближать к таблице до момента, когда он увидит ее первую строку. Поскольку толщина пальцев руки примерно соответствует ширине штрихов оптотипов первой строки таблицы, можно демонстрировать обследуемому раздвинутые пальцы (желательно на темном фоне) с различного расстояния и соответственно определять остроту зрения ниже 0,1 также по приведенной выше формуле. Если острота зрения ниже 0,01, но обследуемый считает пальцы на расстоянии 10 см (или 20, 30 см), тогда острота зрения равна счету пальцев на расстоянии 10 см (или 20, 30 см). Больной может быть не способен считать пальцы, но определяет движение руки у лица, это считается следующей градацией остроты зрения. Минимальной остротой зрения является светоощущение (у18 = 1/-) с правильной или неправильной светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю (у18 = 0), и глаз считается слепым. Для определения остроты зрения у детей пользуются таблицей Е. М. Орловой. В ней в качестве оптотипов использованы рисунки знакомых им предметов и животных. И все же в начале исследования остроты зрения у ребенка рекомендуется подвести его близко к таблице и попросить назвать оптотипы. Таблица для исследования остроты зрения помещается в открытом спереди деревянном ящике, стенки которого изнутри облицованы зеркалами. Перед таблицей находится электрическая лампа, закрытая сзади экраном для постоянного и равномерного ее освещения (аппарат Рота – Рославцева). Оптимальной является освещенность таблицы, которую дает обычная лампа накаливания в 40 Вт. Осветитель с таблицами укрепляют на стене, противоположной окнам. Нижний край осветителя помещают на расстоянии 120 см от пола. Помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещенными. В настоящее время для исследования остроты зрения все чаще используются проекторы испытательных знаков. На экран с расстояния 5 м проецируются оптотипы различного размера. Экраны изготовлены из матового стекла, что уменьшает контрастность между оптотипами и окружающим фоном. Считают, что такое пороговое определение больше способствует реальной остроте зрения. Для определения остроты зрения ниже 0,1 применяют оптотипы, разработанные Б. Л. Поляком в виде штриховых тестов и колец Ландольта, предназначенных для предъявления на определенном близком расстоянии с указанием соответствующей остроты зрения. Данные оптотипы специально созданы для военно – врачебной и медико – социальной экспертизы, проводимой при определении годности к военной службе или группы инвалидности. Существует и объективный (независящий от показаний пациента) способ определения остроты зрения, основанный на оптоклистическом нистагме. С помощью специальных аппаратов обследуемому демонстрируют двигающиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм (увиденный врачом), и соответствует остроте зрения исследуемого глаза. При определении остроты зрения необходимо выполнять определенные правила. 1. Исследовать остроту зрения монокулярно (раздельно) в каждом глазу, начиная с правого. 2. При проверке оба глаза должны быть открыты, один из них заслоняется щитком из непрозрачного материала. Если его нет, то глаз можно закрыть ладонью (но не пальцами) испытуемого. Важно, чтобы он не нажимал через веки на прикрытый глаз, так как это может привести к временному понижению зрения. Щиток или ладонь держат вертикально перед глазом, чтобы была исключена возможность умышленного или неумышленного подглядывания, и чтобы свет сбоку попадал на открытую глазную щель. 3. Исследование надо проводить при правильном положении головы, век и взора. Не должно быть наклонов головы к одному или другому плечу, поворотов головы вправо или влево, наклонов ее кпереди или кзади. Недопустимо щуриться. При близорукости это приводит к повышению остроты зрения. 4. При исследовании следует учитывать фактор времени. При обычной клинической работе время экспозиции равняется 2–3 с, при контрольно-экспериментных исследованиях – 4–5 с. 5. Оптотипы в таблице следует показывать указкой; ее конец должен быть хорошо различим, его устанавливают точно под экспонируемым оптотипом на некотором расстоянии от знака. 6. Начинать исследование надо с показа в разбивку оптоти-пов десятого ряда таблицы, постепенно переходя к рядам с более крупными знаками. У детей и у людей с заведомо пониженной остротой зрения проверку остроты зрения допустимо начинать с верхней строки, показывая сверху вниз по одному знаку в строке до ряда, в котором пациент ошибается, после чего следует вернуться к предыдущему ряду. Остроту зрения необходимо оценивать по ряду, в котором были правильно названы все знаки. Допускается одна ошибка в третьем – шестом рядах и две ошибки в седьмом – десятом рядах, но тогда они регистрируются в записи остроты зрения. Остроту зрения вблизи определяют по специальной таблице, которая рассчитана на расстояние 33 см от глаза. Если больной не видит верхний ряд таблицы Головина – Сивцева, т. е. острота зрения меньше 0,1, то определяют расстояние, с которого он различает оптотипы первого ряда. Для этого исследуемого подводят ближе к таблице до тех пор, пока он не увидит первый ряд, и отмечают расстояние, с которого он различил оптотипы данного ряда. Иногда пользуются разрезными таблицами с оптотипами первого ряда, которые приближают к больному. О наличии зрения у новорожденного можно судить по прямой и содружественной реакциям зрачков на свет, при внезапном освещении глаз – по общей двигательной реакции и смыканию век. Со второй недели новорожденный реагирует на появление в поле зрения ярких предметов поворотом глаз в их сторону и может кратковременно следить за их движением. В 1–2 месяца ребенок достаточно долго фиксирует двигающийся предмет обоими глазами. С 3–5 месяцев форменное зрение можно проверить с помощью ярко-красного шарика диаметром 4 см, а с 6-12 месяцев – шариком такого же цвета, но диаметром 0,7 см. Располагая его на различных расстояниях и привлекая внимание ребенка раскачиванием шарика, определяют остроту зрения. Незрячий ребенок реагирует только на звуки и запахи. Можно ориентировочно проверить остроту зрения, которая имеет решающее значение при профотборе, трудовой и военной экспертизе. Острота зрения может понижаться в зависимости от многих причин. Их можно разделить на три группы. Самая частая причина – это аномалия рефракции (близорукость, дальнозоркость, астигматизм). В большинстве случаев острота зрения повышается или корригируется полностью с помощью очковых стекол. Вторая причина понижения зрения – помутнение преломляющих прозрачных структур глаза. Третья причина – заболевания сетчатки и зрительного нерва, проводящих путей и зрительных центров. Следует отметить также, что в течение жизни острота зрения изменяется, достигая максимума (нормальных величин) к 5– 15 годам и затем постепенно снижаясь после 40–50 лет. ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ Периферическое зрение является функцией палочкового и колбочкового аппарата всей оптически деятельной сетчатки и определяется полем зрения. Поле зрения – это видимое глазами (глазом) пространство, которое человек видит при неподвижном фиксированном взоре. Периферическое зрение помогает ориентироваться в пространстве. Поле зрения каждого глаза имеет конкретные параметры. Они определяются границей оптически деятельной сетчатки и могут ограничиваться верхним краем глазницы или спинкой носа. Нормальные границы поля зрения на белый цвет следующие: кнаружи – 90°, кверху кнаружи – 70°, кверху кнут-ри – 55°, кнутри – 55°, книзу кнутри – 50°, книзу – 65°, книзу кнаружи – 90°. Поле зрения изменяется при заболеваниях сетчатки, глаукоме, патологии в зрительном пути. Эти изменения заключаются в концентрическом или локальном сужении границ и появлении выпадений (скотом) в поле зрения. В нормальном поле зрения имеются физиологические скотомы: слепое пятно в височной половине поля зрения в 15° от точки фиксации и ангиоскотомы. Слепое пятно способствует проекции диска зрительного нерва, не содержащего фоторецепторов. Вокруг него располагаются ангиоскотомы. Эти лентовидные выпадения в поле зрения связаны с крупными ретикальными сосудами, которые закрывают собой фоторецептор-ные клетки. Концентрическое сужение поля зрения со всех сторон характерно для пигментной дистрофии сетчатки и поражения зрительного нерва. Поле зрения может уменьшиться вплоть до трубочного, когда остается только участок 5-10° в центре. Пациент еще может читать, но не может самостоятельно ориентироваться в пространстве. Симметричные выпадения в полях зрения правого и левого глаза – симптом, свидетельствующий о наличии опухоли, кровоизлияния или очага воспаления в основании мозга, области гипофиза или зрительных трактов. Гетеронимная битемпоральная гемианопсия – это симметричное половинчатое выпадение височных полей зрения обоих глаз. Оно возникает при поражениях внутри хиазмы перекрещивающихся нервных волокон, идущих от носовых половин сетчатки правого и левого глаза. Гетеронимная биназальная симметричная гемианопсия встречается редко, например при выраженном склерозе сонных артерий, одинаково сдавливающих хиазму с двух сторон. Гомонимная гемианопсия – это половинчатое одноименное (право – или левостороннее) выпадение полей зрения в обоих глазах. Оно возникает при наличии патологии, затрагивающей один из зрительных трактов. Если поражается правый зрительный тракт, то возникает левосторонняя гомоним-ная гемианопсия, т. е. выпадают левые половины полей зрения обоих глаз. При поражении левого зрительного тракта развивается правосторонняя гемианопсия. В начальной стадии опухолевого или воспалительного процесса может быть сдавлена только часть зрительного тракта. В этом случае определяются симметричные гомонимные квадратные гемианопсии, т. е. выпадает четверть поля зрения как в правом, так и в левом глазу. Когда опухоль мозга затрагивает корковые отделы зрительных путей, вертикальная линия гомонимных выпадений полей зрения не захватывает центральные отделы, она обходит точку фиксации, т. е. зону проекции желтого пятна. Это объясняется тем, что волокна от нейроэлементов центрального отдела сетчатки уходят в оба полушария головного мозга. Патологические процессы в сетчатке и зрительном нерве могут вызывать изменения границ поля зрения различной формы. Для глаукомы, например, характерно сужение поля зрения с носовой стороны. Локальные выпадения внутренних узлов поля зрения, не связанных с его границами, называют скотомами. Скотомы бывают абсолютными (полное выпадение зрительной функции) и относительными (понижение восприятия объекта в исследуемом участке поля зрения). Наличие скотом свидетельствует об очаговых поражениях сетчатки и зрительных путей. Скотома может быть положительной и отрицательной. Положительную скотому видит сам больной как темное или серое пятно перед глазом. Такое выпадение в поле зрения возникает при поражениях сетчатки и зрительного нерва. Отрицательную скотому сам больной не обнаруживает, ее выявляют при исследовании. Обычно наличие такой скотомы свидетельствует о поражении проводящих путей. Мерцательные скотомы – это внезапно появляющиеся кратковременные перемещающиеся выпадения в поле зрения. Даже в том случае, когда пациент закрывает глаза, он видит яркие, мерцающие зигзагообразные линии, уходящие на периферию. Этот симптом является признаком спазма сосудов головного мозга. Мерцательные скотомы могут появляться с неопределенной периодичностью. При их появлении пациент должен немедленно принимать спазмолитическое средство. Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/vera-podkolzina/spravochnik-okulista/?lfrom=334617187) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
КУПИТЬ И СКАЧАТЬ ЗА: 199.80 руб.